
Integral Systems Engineering
Methodology

Kent Palmer

2011.04.11

http://kdp.me kent@palmer.name

http://kdp.me/

Problematic:

What is the foundation of Systems
Engineering?

Answer: Systems Theory => Schemas
Theory

Given that, what is the nature of
Design?

Answer: Quadralectics
Given that, what is the implication for
Practice?

Answer: Language Oriented Design

Research Program began with an attempt to understanding
Real-time Software Architectural Design Methods

Methodological Distinctions

Software and Hyper Being

GASM and Minimal Methods of Design
are duals

ISEM

ÅFour viewpoints on Real-time System Design
ÅMinimal methods are slices of a Turning machine and that

explains the wholeness of the methodological field
ÅViewpoints related to G. Klir ASPS Methodological

Distinctions causes Field to be lopsided
ÅFits into YƭƛǊΩǎ concept of Background Variables
ïPopulation, Space, Time

ÅMany of the minimal methods appear in UML/SYSML
profiles

ÅEach minimal method can be expressed in its own
Architectural Domain Specific Language (ADSL)

ÅSee Wild Software Meta-systems circa 1996

Transitioned from Software Methods research to working on Systems
Engineering Foundations

Systems Theory
interdisciplinary

Schemas Theory
next higher level of abstraction

Systems Engineering Schemas Engineering

Pattern
Form
Domain

U. Eco
Kant & Platypus
Math & Geometric Schemas

Other schemas:

Hypothesis {Ω

Ten Schemas
Pluriverse 8, 9
Kosmos 7,8
World 6, 7
Domain 5, 6
OpenScape 4, 5
System 3,4
Form 2, 3
Pattern 1, 2
Monad 0, 1
Facet -1, 0

ÅSchemas are the templates of
understanding spacetime
organizations, which we project a
priori (ala Kant)
ÅRule:
ÅTwo Schemas per Dimension
ÅTwo Dimensions per Schema

ÅNested Hierarchy with Different
Scopes
ÅAutopoietic Reflexive Structure

F theory 12
M theory 11
String theory 10

Pluriverse 8, 9
Kosmos 7, 8
World 6, 7
Domain 5, 6
Openscape 4, 5
System 3, 4
Form 2, 3
Pattern 1, 2
Monad 0, 1
Facet -1, 0

Natural Limits of our Comprehension of Organizational Structures of Phenomena

E
xp

e
ri
e

n
ce

d

S
im

p
lic

ity
,

S
m

a
lle

r
S

co
p

e

G
re

a
te

r
S

yn
th

e
s
is

,
H

ig
h

e
r

S
yn

e
rg

y,
 G

re
a
te

r
S

co
p

e

Hypersphere volume max

Hypersphere surface max

7+/- 2 dimensions
Independent Variables

Two
Timelines

Maximal Design Space

Design as Sign Engineering

Meta-levels of the Sign
Design is the third meta-level of the sign

Kind of
Being

Kind of
sign

Mode of being-in-
the-world

Psychological
concomitant

ego type

Ultra obsign handless lost singularity

Wild resign out-of-hand encompass enigma

Hyper design in-hand bear query

Process ensign ready-to-hand grasp Dasein/eject

Pure sign present-at-hand point Subject/object

Pieter Wisse in his dissertation pointed out the semiotic dimension of engineering

Design:

ÅDifferance (differing/deferring)

ïHeidegger Being (crossed out)

ïDerrida

ïάǎƭƛǇ-ǎƭƛŘƛƴƎ ŀǿŀȅέ όtŀǳƭ {ƛƳƻƴύ

ÅGrammatology (science of traces)

ÅTraces of potentials in possibility

ïLead to emergent eventities

ÅtƭŀǘƻΩǎ ¢ƘƛǊŘ ǘȅǇŜ ƻŦ .ŜƛƴƎ ƛƴ ǘƘŜ Timeous

Differance: non-representablity

ÅPeter Naur
ïNo amount of documentation can capture a design

completely, you must talk to the designer to
understand a design completely

ÅSoftware as an artifact has the nature of
Differance embodied within it

ÅSoftware makes systems adaptable but also
makes design very difficult

ÅDesign is fated to embody non-representable
differance

How design embodies non-
representable differance

Å0d - Monolectic - Dogmatic Uncritical Philosophy

Å1d - Dialectic - KANT static, HEGEL dynamic

Å2d - Trialectic - HEGEL work (prior to advent of spirit)

Å----------------------

Å3d - Quadralectic ς B. Fuller dynamic minimal system

Å4d - Pentalectic ς Synergistic system and meta-system

Multilectics Structured by Meta-levels
of Being

Nature Multilectic Kind of Being Characteristic Concommitant

Dogmatism of
the uncritical
0d

Monolectic Pure Static Point

Aufhebung 1d Dialectic Process Dynamic Grasp

Work that gives
rise to the
product 2d

Trialectic Hyper Slippery Bear

Minimal System
3d (tetra, knot,
torus, mobius)

Quadralectic Wild Fragmented Encompass

Pentachora in
4d space

Pentalectic Ultra Singularity Lost

Composition of the Quadralectic

Quadralectics of Design:
Moments at non-representable trace level

Moments of the Quadralectic

Four Design Viewpoints and
Quadralectic

tŜƛǊŎŜΩǎ tǊƛƴŎƛǇƭŜǎ ƻŦ ǘƘŜ !ǊŎƘƛǘŜŎǘƻƴƛŎ
Principle Characteristic Source

Seventh Outside the singularity new

Sixth Poise new

Fifth Integrity Fuller

Fourth Synergy Fuller

Third Synthesis (Continuity) Peirce

Second Relata Peirce

First Isolata Peirce

Zeroth Void/Emptiness new

Neganary Inside the singularity new

Design Field is widest at the Hyper Being level
Quadralectic is inscribed in the Design Field

First Second Third Fourth

Ultra Subtlety Affinity Mutable Simultaneity

Wild Refinement Inflection Malleable Ensemble

Hyper Qualia Kind Topology Synergy

Process Spectra Category Manifold Lattice

Pure Property Map Continuity Interdepen-
dence

being individual element array component

C
o

n
c
e

p
t

E
ss

e
n

ce

P
e

rs
p

e
ct

iv
e

D
e

s
ig

n

Design appears as
we move the

synthesis toward
higher levels of

synergy, integrity,
and poise

Wild Being
and Hyper
Being are

duals of each
other related

to the
contraction

and expansion
of being-in-
the-world

Quadralectic to Pentalectic

Order 60

Pentalectic
has an

emergent
surplus

signified by
the fifth

Tetrahedron

Design Landscape

Point Design

Praeto Optima We need a way
to easily explore
the design
landscape for the
systems we build.

Answer

Domain Specific Languages

that incorporate Models

which can be varied

to move through the design landscape

and represent domain specific concepts

as well as the minimal methods used in the
architectural domain of System Design

DSL issues

Programming
Languages

UML/SysML

Internal
DSL

External
DSL

Profiles

Implementation Design

Å Complex syntax
for nesting

Å Closed Turing
Complete

Å Too general
Å Semantics

determined by
compiler actions

Å Minimal Methods
Å Graphical

Representation
Å Profiles for

Extension
Å Monolithic

without unity
Å Semantically

Weak

Å Conforms to
language syntax
and semantics

Å Not understood
by domain
experts

Å Code

Å Textual
Å Parser necessary
Å Non-standard
Å Technologically

Intensive

Å Non-standard
must be
developed and
added to tool

Abstract
Syntax
Tree

Å Difficult to
work with

Å Closer to
Model

Domain Level

A Solution

Å²ƛǘǘƎŜƴǎǘŜƛƴΩǎ Tractatus
ÅUnbind design language from programming

language for the design activity
ÅSimplify Language Structure without nesting
ÅAllow multiple connections in a single statement
ς more expressive and synthetic
ÅSemantics = Knowledge capture rather than

complier execution
ÅGive up primary Visual representation mode
ÅGive up primary goal of parse-ablity

Formal System

Clarity
(well-formedness)

Consistency
(unity) completeness

(totality)

context

Add Reality to the Formal Model

Clarity
(well-formedness)

Consistency
(unity) completeness

(totality)

context

Clarity
(well-formedness)

Coherence
completeness
(totality)

context

In
Out

Aspects and Properties

TRUTH

PRESENCE

IDENTITY

REALITY

ve
ri
fia

b
ili

ty

consistency

co
m

p
le

te
n

e
ss

validatability

Para-Formality

Hyper
Being
Design
Model

Para-complete

Para-clear

Para-consistent

F
o

rm
a

l

coherence

Model
Represented
as DSL
moving
across Design
Landscape

People can make up languages more easily
than they can learn already existing languages

made up by others
Å Fundamental Efficiency to be exploited in Domain Specific Language

Model Development
Å Schemas have the same structure as language and thus there is an

internal coherence between language and schemas
Å Language Oriented Approach unbinds Design Language from

Programming language during design process
Å Allows for Para-Properties related to all Aspects of Being
ïPara-

ÅConsistency
ÅCompleteness
ÅClarity
ÅVerification
ÅValidation
ÅCoherence

Math of Certainty Kinds of Being

Determinate Pure

Probability Process

Fuzzy Hyper

Propensity Wild

Design of Design

ÅMultiple relationships for one statement
ÅTextual not graphical, at first
ÅExploit Synthesis not just relations
ÅPrecission vs. Precision
ÅSynthesis vs. Analysis
ÅExpress each fact about design as it is known
ïLacks complete knowledge to start with

ÅUse language template in Spreadsheet
ïRetooling not necessary ς tool already available
ïEases adoption of the core of Domain Specific Model

Development

Snumber Language Statement Number CML01

Sname Statement Name EdgeIdentifer

arrow decoration ->

Family Language Family CORE

Language Domain Specific Language Name Meta

Package Package Name language

id identifier id

Operator Operator Define

Switch Switch

Noun0/Operand0 Operand / Noun identifier

id identifier id

Verb1 Verb is

Preposition1/Adverb1 Preposition

Noun1 Noun edge

id identifier n

Qualifier1 Qualifier

Verb2 Verb

Preposition2 Preposition

Noun2 Noun

id identifier

Qualifier2 Qualifier

Verb3 Verb

Preposition3 Preposition

Noun3 Noun

id identifier

Qualifier4 Qualifier

Verb4 Verb

Preposition4 Preposition

Noun4 Noun

id identifier

Qualifier4 Qualifier

period . .

znumber Permanent Identifier z1

Prefix

Operator/
Operand

SVpOq

VpOq

VpOq

VpOq

Postfix

Package/Preposition0
id

Operator/Verb0
Switch/Qualifer0

Noun0/Operand0
id

Verb1

Preposition1/Adverb1
Noun1

id

Qualifier1

Verb2
Preposition2
Noun2
id

Qualifier2

Verb3
Preposition3
Noun3
id

Qualifier4

Verb4
Preposition4
Noun4
id

Qualifier4

Pkg/Operator
/Switch/
Operand

SVpOq

VpOq

VpOq

VpOq

Verb Preposition Noun Qualifier

Op0 Pkg0 (in) S0/
Opnd

Switch0

V1 P1 O1 q1

V2 P2 O2 q2

V3 P3 O3 q3

V4 P4 O4 q4

Four-way synthesis
possible in each
statement

Meta2model = Spreadsheet language structure

Meta1model = Domain Specific Language (DSL)

Meta0model = Instantiated Statements in DSL

S
n

u
m

b
e
r

S
n

a
m

e
a
rr

o
w

F
a
m

ily

L
a
n

g
u

a
g
e

P
a
ck

a
g
e

id

O
p

e
ra

to
r

S
w

itc
h

N
o

u
n

0
/O

p
e
ra

n
d

0
id

V
e
rb

1

P
re

p
o

s
it
io

n
1

/A
d

ve
rb

1

N
o

u
n

1 id

Q
u

a
lif

ie
r1

V

e
rb

2

P
re

p
o

s
it
io

n
2

N
o

u
n

2 id

Q
u

a
lif

ie
r2

V
e
rb

3

P
re

p
o

s
it
io

n
3

N
o

u
n

3 id

Q
u

a
lif

ie
r4

V

e
rb

4
P

re
p

o
s
it
io

n
4

N
o

u
n

4 id

Q
u

a
lif

ie
r4

p

e
ri

o
d

zn
u

m
b

e
r

CML01 -> CORE Meta language id Define identifier id is edge n . z1

CML01 -> CORE Meta language ISEM Define identifier T1 is edge 6 . z1

Reflexive Language about the ISEM Language

SVpOq Template

Language as structure and as text

Statements of Design facts are the
Basis of the Language

Topic Maps included in language
description to give access to Models

AST tree representation included

Operator and Operand structure

Semantics explicitly represented

Metadata

Recently added concepts which show
relation between topics and model

Relation between operators
and operands and AST tree

Is
(missing)

Combination of Syntax and Semantics
fully defines the language

S
n
u
m

b
e
r

S
n
a
m

e

a
rr

o
w

F
a
m

ily

L
a
n
g

u
a
g

e

P
a
c
ka

g
e

id

O
p
e
ra

to
r

S
w

it
c
h

N
o
u
n
0

/O
p
e
ra

n
d
0

id

V
e
rb

1

P
re

p
o
s
it
io

n
1

/A
d

v
e
rb 1

N
o
u
n
1 id

Q
u
a
lif

ie
r1

V
e
rb

2

CML01 -> CORE Meta language id Define identifier id is edge n
CML02 -> CORE Meta language id Define identifier id is element string
CML03 -> CORE Meta language id Define identifier id is grammar
CML04 -> CORE Meta language id Define identifier id is instruction
CML05 -> CORE Meta language Define identifier id is language
CML06 -> CORE Meta language id Define identifier id is metadata
CML07 -> CORE Meta language id Define identifier id is node n
CML08 -> CORE Meta language id Define identifier id is nonterminal n
CML09 -> CORE Meta language id Define identifier id is noun
CML10 -> CORE Meta language id Define identifier id is operand
CML11 -> CORE Meta language id Define identifier id is operator
CML12 -> CORE Meta language id Define identifier id is package
CML13 -> CORE Meta language id Define identifier id is path list
CML14 -> CORE Meta language id Define identifier id is phrase
CML15 -> CORE Meta language id Define identifier id is position n
CML16 -> CORE Meta language id Define identifier id is punctuation
CML17 -> CORE Meta language id Define identifier id is qualifier string
CML18 -> CORE Meta language id Define identifier id is section n
CML19 -> CORE Meta language id Define identifier id is sequence list
CML20 -> CORE Meta language id Define identifier id is statement string
CML21 -> CORE Meta language id Define identifier id is structure
CML22 -> CORE Meta language id Define identifier id is switch string
CML23 -> CORE Meta language id Define identifier id is syntax
CML24 -> CORE Meta language id Define identifier id is template
CML25 -> CORE Meta language id Define identifier id is terminal n
CML26 -> CORE Meta language id Define identifier id is text string
CML27 -> CORE Meta language id Define identifier id is transform string
CML28 -> CORE Meta language id Define identifier id is tree hierarchy
CML29 -> CORE Meta language id Define identifier id is verb

CML30 token is adverb

CML31 token is arrow

CML32 token is begin

CML33 token is end

CML34 token is family

CML35 token is finish

CML115 token is paragraph

CML36 token is period "."

CML37 token is preposition

CML38 token is Sname string

CML39 token is Snumber "aaannn"

CML40 token is start

CML41 token is Znumber "Znnnn"

CML161 association id has role id
CML170 category id has concept id
CML171 category id has relation id
CML173 category id includes topic id
CML172 category id is synthesis id
CML154 concept id has concept id
CML166 concept id has occurrence id
CML155 concept id has relation id
CML148 concept id is element id
CML147 concept id is node id
CML150 concept id is operand id
CML164 concept id is topic id
CML43 edge id connects to node id
CML44 element id is nonterminal id
CML45 element id is terminal id
CML46 element id has position n
CML122 grammar id has context id
CML125 grammar id has parser id
CML47 grammar id has structure id
CML48 instruction id contains operand id
CML49 instruction id contains operator id
CML50 instruction id contains switch id
CML51 language id has text id
CML52 language id has grammar id
CML144 markup id has tag id
CML53 metadata id contains arrow id

CML54 -> CORE Meta language id Posit metadata id contains family id for statement string .

CML55 -> CORE Meta language id Posit metadata id contains language id for statement string .

CML56 -> CORE Meta language id Posit metadata id contains package id for statement string .

CML57 -> CORE Meta language id Posit metadata id contains Sname id of statement string .

CML58 -> CORE Meta language id Posit metadata id contains Snumber id of statement string .

CML177 -> CORE Meta language id Posit metadata id contains topic id .

CML59 -> CORE Meta language id Posit metadata id contains Znumber id of statement string .

CML140 -> CORE Meta language id Posit model id contains statement id

CML169 -> CORE Meta language id Posit model id has category id

CML129 -> CORE Meta language id Posit model id has concept id

CML179 -> CORE Meta language id Posit model id has diagram id

CML130 -> CORE Meta language id Posit model id has relation id

CML131 -> CORE Meta language id Posit model id has synthesis id

CML60 -> CORE Meta language id Posit node id connects to edge id

CML61 -> CORE Meta language id Posit node id has element id

CML62 -> CORE Meta language id Posit node id is start node id

CML63 -> CORE Meta language id Posit node id is nonterminal id

CML64 -> CORE Meta language id Posit node id is operand id

CML65 -> CORE Meta language id Posit node id is operator id

CML66 -> CORE Meta language id Posit node id is terminal id

CML67 -> CORE Meta language id Posit nonterminal id has nonterminal id

CML68 -> CORE Meta language id Posit nonterminal id has terminal id

CML69 -> CORE Meta language id Posit noun id is operand id

CML70 -> CORE Meta language id Posit operand id is terminal id

CML71 -> CORE Meta language id Posit operator id is terminal id

CML72 -> CORE Meta language id Posit package id has finish id

CML141 -> CORE Meta language id Posit package id has format id

CML73 -> CORE Meta language id Posit package id has start id

CML73 -> CORE Meta language id Posit package id has start id

CML74 -> CORE Meta language id Posit package id finish

CML75 -> CORE Meta language id Posit package id start

CML135 -> CORE Meta language id Posit paragraph id has format id

CML134 -> CORE Meta language id Posit paragraph id has separator id

CML118 -> CORE Meta language id Posit paragraph id has statement id

CML120 -> CORE Meta language id Posit paragraph id completion

CML119 -> CORE Meta language id Posit paragraph id inception

CML126 -> CORE Meta language id Posit parser id gives tree id

CML145 -> CORE Meta language id Posit parser id recognizes syntax id

CML76 -> CORE Meta language id Posit path id has edge id

CML77 -> CORE Meta language id Posit path id has node id

CML78 -> CORE Meta language id Posit phrase id has element id

CML176 -> CORE Meta language id Posit phrase id has occurrence id

CML79 -> CORE Meta language id Posit phrase id is instruction id

CML80 -> CORE Meta language id Posit phrase id is template id

CML81 -> CORE Meta language id Posit preposition id connects noun id

CML82 -> CORE Meta language id Posit punctuation id is period id

CML83 -> CORE Meta language id Posit qualifier id qualifies statement id

CML163 -> CORE Meta language id Posit relation id is association id

CML146 -> CORE Meta language id Posit relation id is edge id

CML149 -> CORE Meta language id Posit relation id is operator id

CML168 -> CORE Meta language id Posit relation id has occurrence id

CML151 -> CORE Meta language id Posit relation id is nonterminal id

CML84 -> CORE Meta language id Posit section id has begin id

CML85 -> CORE Meta language id Posit section id has end id

CML137 -> CORE Meta language id Posit section id has format id

CML86 -> CORE Meta language id Posit section id has statement id

CML87 -> CORE Meta language id Posit section id begin

CML88 -> CORE Meta language id Posit section id end

CML124 -> CORE Meta language id Posit semantics id has model id

CML175 -> CORE Meta language id Posit semantics id includes category id

CML89 -> CORE Meta language id Posit sequence id contains instruction id

CML90 -> CORE Meta language id Posit sequence id contains metadata id

CML91 -> CORE Meta language id Posit sequence id contains template id

CML165 -> CORE Meta language id Posit sequence id has statement id

CML92 -> CORE Meta language id Posit sequence id has position n

CML138 -> CORE Meta language id Posit statement id expresses idea id

CML133 -> CORE Meta language id Posit statement id gives idea id

CML93 -> CORE Meta language id Posit statement id has sequence id

CML156 -> CORE Meta language id Posit statement id has topic id

CML142 -> CORE Meta language id Posit string id has format id

CML94 -> CORE Meta language id Posit structure id gives syntax id with transform id

CML95 -> CORE Meta language id Posit structure id has instruction id

CML96 -> CORE Meta language id Posit structure id has metadata id

CML123 -> CORE Meta language id Posit structure id has semantics id

CML97 -> CORE Meta language id Posit structure id has template id

CML174 -> CORE Meta language id Posit syntax id expresses semantics id

CML98 -> CORE Meta language id Posit syntax id has phrase id

CML99 -> CORE Meta language id Posit syntax id has tree id

CML153 -> CORE Meta language id Posit synthesis id has concept id

CML167 -> CORE Meta language id Posit synthesis id has occurrence id

CML152 -> CORE Meta language id Posit synthesis id has relation id

CML132 -> CORE Meta language id Posit synthesis id is idea id

CML100 -> CORE Meta language id Posit template id contains adverb id

CML101 -> CORE Meta language id Posit template id contains noun id

CML102 -> CORE Meta language id Posit template id contains preposition id

CML103 -> CORE Meta language id Posit template id contains punctuation id

CML104 -> CORE Meta language id Posit template id contains qualifier id

CML105 -> CORE Meta language id Posit template id contains verb id

CML136 -> CORE Meta language id Posit text id has format id

CML143 -> CORE Meta language id Posit text id has markup id

CML106 -> CORE Meta language id Posit text id has package id

CML107 -> CORE Meta language id Posit text id has sequence id

