
A Critique of SysML from the point of view of General Schemas Theory -- Kent 
Palmer 

1 

A Critique of SysML 
from the point of view 
of General Schemas 

Theory 

The Application of General 
Schemas Theory 

Kent D. Palmer, Ph.D. 

P.O. Box 1632  
Orange CA 92856 USA 

714-633-9508 
kent@palmer.name 

 
Copyright 2004 K.D. Palmer.  

All Rights Reserved. Not for distribution.  
Started 04.07.15; Version 0.3; 04.07.16; sml01a03.doc 

 
 
Keywords: General Schemas Theory, Systems 
Engineering, Systems Theory,  
  
 
SysML extends UML 
 
Currently under development is an extension to 
UML 2.0 called SysML which attempts to 
make UML more useful for Systems 
Engineering. UML is the standard design 
language for Software Engineering. This paper 
is using Draft 1 version 3 of the SysML 
specification as a starting point. It is clear that 
the SysML is still under development so this 
paper seeks to give some background 
information and some arguments that seeks to 
influence the design of SML and ultimately 
UML 3 that might incorporate SysML. 
 
Phenomenology of Graphical verses Textual 
Design Languages 
 
 
Our first point concerns the whole idea of UML 
itself which has grown out of an attempt to 

consolidate the myriad design representations in 
Software Engineering around a single set of 
diagrams which could then be used by various 
methodologies. The goal was to attempt to keep 
the change in the Software Engineering tools to 
a minimum where each methodologist would 
use different diagrammatic conventions for very 
similar concepts. UML does not specify the 
methodology or steps by which the diagrams 
are applied, but attempts to give a universal set 
of diagrams congealed around the object 
oriented approach by which systems designs 
could be expressed when combined with a 
methodology.  

 

The first point of critique is against the entire 
concept of graphical representation of designs 
as the only means of communication of design 
theories. Graphical representations are excellent 
for some purposes but they also have 
limitations that are seen in the UML language 
but are not often mentioned because this is the 
dominant paradigm. It is strange that we do not 
have text based design languages as well as 
graphical design languages and that there is no 
way to transform back and forth between 
graphical and textual languages. Perhaps one 
reason for this is that Textual design languages 
would put the Tool vendors out of business. 
This is because one would not need to buy 
fancy graphical programs in order to record 
textual designs. There is beyond this quibbling 
with the economic motives a fundamental fact 
about graphical representations of designs as 
opposed to textual representations of designs, 
which is that graphical representations are 
semantically poor compared with textual 
representations. We know this from the 
comparison to software languages. Graphical 
programming environments have never really 
taken off because the graphical representation 
takes up too much space and gives too little pay 
back in terms of leverage over the program 
being written. We continue to write programs in 
textual languages because of their combined 
compactness and semantic richness. But when 
we do Software Design we expect to be able to 
make the design visibly graphically but that 



A Critique of SysML from the point of view of General Schemas Theory -- Kent 
Palmer 

2 

graphical representation has little connection 
with the implementation other than through 
template generation capabilities in most cases. 
What is happening is that ULM in its second 
version itself is growing in complexity and as 
such the models are becoming harder to 
understand because of the number of graphical 
elements that are needed to represent a design is 
growing. Textual design languages are needed 
in order to represent the designs more 
compactly than the graphical representations 
and also in order to increase the semantic 
richness of the description of the design. But 
most of the textual design languages are formal 
languages which merely represent the next 
higher level from the software languages 
constructing a scaffolding around the design 
rather than representing it more efficiently. The 
key problem here is that a design language 
needs to be syntactically open, such that the 
designer can invent new semantic and syntactic 
relations on the fly in the process of design. 
This makes these languages very difficult to 
parse and to use because suddenly they are 
context dependent rather than context 
independent. 

 

Thus it is an open problem how to create a 
context dependent readily extensible design 
language for systems and software engineering. 
An attempt was represented by the Integral 
Software Engineering Methodology (ISEM) 
invented by the author. This language took 
many ideas from Systems Theory and 
attempted to create a language that was 
exhaustive and methodologically complete. It 
still stands as a valiant effort to codify what 
was known about software design methods at 
that time and to present them in a form that was 
based on the most sophisticated systems theory 
that then existed. The challenge is how to take 
UML 2 and SysML and attempt to extend them 
so as to incorporate the advanced concepts 
from ISEM which are still not apparent in the 
literature on Software Engineering Methods and 
Design representations. But that new 
incarnation of ISEM also needs to be textually 
based to provide an alternative to the 

semantically poor, and monitor real estate 
expensive UML and SysML graphical 
paradigm. However, in order to introduce the 
advanced concepts of ISEM it is better to build 
upon the knowledge that designers already have 
of the design methods and tools that exist now 
rather than producing some non-standard 
alternative. 

 

The whole problem with UML and SysML is 
that there has been no phenomenological 
analysis of the key problem of design. That key 
problem is the role of the kinds of Being in the 
Design process. We run right up against human 
finitude in the process of design, we can only 
see so much material at the same time, and then 
one hits a barrier in which showing and hiding 
relations become manifest between the designer 
and their design. How ever big the screen we 
end up navigating though the design eventually 
and that leads to our getting lost in the plethora 
of objects that appear in the design. We then 
have problems seeing the patterns into which 
these objects are collaborating across the large 
scale system. UML is fine for small systems 
but for large systems there is a fundamental 
problem of our getting lost in the designs which 
have become too complicated. Thus there is a 
horizon to the usefulness of UML for large 
systems despite the use of hierarchy to 
ameliorate these problems within UML. In this 
lostness during the design process we encounter 
Hyper Being. Pure Being is the whole design 
seen from Gods eye that beholds the whole all 
at once. Process Being is the showing and 
hiding relations that are made necessary by our 
human finitude. We have to navigate the design 
and remember what we saw in various places 
and construct a theory about how the design 
works in our heads. But when we get lost in the 
design then that is when Hyper Being is 
encountered.    Hyper Being appears as our 
indecision about the design or our inability to 
formulate a theory of the workings of the 
design. Wild Being, which is the highest kind of 
Being, appears as the basic opacity of the 
design that does not allow it to be represented. 
We consign that opacity to Artificial 



A Critique of SysML from the point of view of General Schemas Theory -- Kent 
Palmer 

3 

Intelligence and try to get rid of all the 
attributes of software  that is indeterminate by 
that move. Software itself embodies Hyper 
Being which is what Derrida calls Differance. It 
is one of the only Cultural Artifacts in existence 
that embodies Hyper Being and so it is rather 
unique in that respect. It is interesting that this 
artifact that embodies Hyper Being is becoming 
ubiquitous in our society through the 
proliferation of machines controlled by real-
time software. What we need to understand 
from a phenomenological perspective is the 
relation of the Kinds of Being to our Designs 
and how that fits into the relation of graphical 
and textual representations. This 
phenomenological analysis has not been done 
and that is the source of many of our problems 
working with the designs of complex systems.  

 

Robert Rosen has some interesting things to say 
about the relation of complexity to simple 
machines. He basically says that living systems 
are non-computable and says that they cannot 
be reduced to Turing machines. He calls the 
aggregation of Simple Machines 
Complicatedness rather than complexity. The 
key point is that he says that there is something 
beyond Turing compatibility which we run into 
in Artificial Intelligence and Life which is the 
non-computable nature of some systems. Peter 
Naur says that there are theories of design that 
cannot be reduced to representations and can 
only be learned by interacting with the designer 
of those systems. It is human living beings that 
make the designs which are non-representable 
and thus probably non-computable as well. So 
it could be that in design of software and 
systems we are running into a fundamental 
horizon of non-computability when we are 
dealing with our designs. When we do design 
we are attempting to introduce synergy into the 
system we are designing in order to produce 
emergent properties. If emergent properties are 
described by Godelian Statements that are 
neither inside nor outside the System being 
described then it follows that perhaps the 
theories that embody those designs are 
themselves not computable, and it is through 

the non-computability that we introduce 
synergy into the system that leads to the 
establishment of emergent properties. If this is 
the case then we are actually facing a very 
difficult problem when we attempt to do design 
and produce representations of it. If software 
itself is an artifact that embodies Hyper Being 
then the design of that software must at least be 
one meta-level higher than the software itself, 
and that takes us into the realm of AI where 
there are variant opaque techniques, such as 
neural nets, self-rewriting code and other 
strange techniques that are incomprehensible to 
the human mind. It is strange that we call these 
opaque techniques Intelligence because 
phenomenologically for us concepts are 
transparent. When we combine different opaque 
AI techniques together we get even more 
strange and more deeply opaque software 
systems. So this appeal to the meta-level 
beyond software itself leads to the idea that 
designs are perhaps opaque. But the non-
computability threshold actually comes at the 
fifth Meta-level of Being called Ultra Being 
where our own projections appear to us from 
the outside rather than the inside. Ultra-Being is 
when all the opacities of the various AI 
techniques are fused into one super-opaque 
singularity which occurs after we pass the 
threshold from Being to Existence. 

 

When we consider UML and SysML in relation 
to this phenomenological analysis that appeals 
to Fundamental Ontology then we see that 
representations of designs have a very tenuous 
place in our understanding of designs. In other 
words, design representations are expressions 
of Pure Being, which is to say that they are 
formal and determinate assuming continuities of 
experience for their articulation that we relate 
to Parmenides view of Being. The 
representations themselves are produced by the 
design process which is an expression of 
Process Being which we know of as Heraclitian 
Flux. But as we design we are continually 
engaging in a showing and hiding process 
where we have to keep the whole design in our 
mind because we cannot see it all at once. So 



A Critique of SysML from the point of view of General Schemas Theory -- Kent 
Palmer 

4 

we are continually roaming around in the design 
representation, which in turn is situated 
somewhere in the design landscape of all 
possible designs. Hyper Being appears as the 
different possibilities that appear at each stage 
of the design. But it also appears within the 
design as its own indeterminacy where we have 
not yet designed or where we have lost the 
meaning of the design we have already done. 
Wild Being represents the opacity of the 
problematic into which our design enters and 
which we attempt to solve by our design. But 
that opacity represents the parts of Software 
that are rejected and are thrown into the vat of 
AI methods so that they do not infect our 
software with defects. Software defects are 
representations of these opacities that have not 
yet been scourged from our software. But still 
the AI techniques do compute something even if 
we cannot understand it. But when we take all 
the possible opacities and put them together to 
get Ultra Being then at that level we have 
something that we can not just no understand 
but which is utterly alien to us, because it 
includes all the isolated non-intelligible AI 
techniques in one conglomerate. When we cross 
the threshold from Being into Existence at the 
fifth meta-level of Being then we enter into the 
realm which Rosen calls utterly incomputable. 
Nauer warns us that our designs are 
representable. But if that is so then they are 
also non-computable, because what cannot be 
represented cannot be computed. But the reason 
it is important to enter into this realm of the 
non-computable is that it is there we garner the 
synergetic qualities that allow emergent 
properties of our systems to arise. But in order 
to create those synergies we need to move into 
an unknown land beyond representation and 
computability. Our representations and methods 
need to be understood against this 
phenomenological background that takes into 
account fundamental ontology in order to get 
the proper perspective on our design 
representations. In other words we want the 
best that representability can offer us but we do 
not want that to be a barrier to our own 
creativity by which we produce synergistic 
systems with emergent properties. What 

happens is that we extend UML to encompass 
new diagrams in SysML but we have no idea 
why these diagrams are right and not others. 
We have no fundamental theory of the relation 
between our representations and our designs. 
Why is it these elements seen in UML and 
SysML and not others that are right for design. 
We make UML extensible to allow others to 
add to it their own extensions and thus allow 
for their changes when they hit some limitation. 
But this does not allow us to understand the 
nature of methods and their relation to the 
diagrams that represent software or systems 
level entities within design. 

 

Some headway in understanding this problem 
was made by the author in Wild Software 
Meta-systems where the theory of design 
methods was propounded. That theory said that 
there were four basic views of Real-time 
Software designs which included data, function, 
agent and event. Another view from 
requirements was added as an auxiliary. This 
was grounded in Klir’s theory of 
methodological distinctions with respect to 
ordering. It says that every design has five 
viewpoints on it, requirements and the four 
other design viewpoints. The minimal methods 
are the bridges between these viewpoints. And 
it is UML that more or less in a haphazard way 
approximates these minimal methods. The 
minimal methods that I discovered as central 
were data flow, virtual layered machines, 
mapping (use cases), darts, worldline and 
scenario, state machines and Petri nets plus 
those relating events and data. The coverage of 
UML of these methods is pretty good, and what 
we see is that SysML is attempting to balance 
out some of the distortions in UML that comes 
from an over emphasis on the Object Oriented 
Approach which got rid of all functional 
representations that were previously very 
popular. But the difference between the Object 
Oriented paradigm and the Functional Oriented 
paradigm is merely whether you look at data 
from the point of view of function or function 
from the point of view of data. The set of 
viewpoints and their methodological bridges 



A Critique of SysML from the point of view of General Schemas Theory -- Kent 
Palmer 

5 

explains the needed diagrams in a minimal 
representation of a software system based on a 
strong systems theoretic basis. As it is both the 
designers of UML and SysML are flying in the 
dark without such an explanation of why the 
elements that they have in their diagrams exist 
or not. They can only say that they seem 
necessary to different degrees. The theory of 
minimal methods explains what a method is, i.e. 
a traversal of the tetrahedron of viewpoints in a 
certain order. Mellor made the observation that 
traversing the viewpoints in a different order 
will result in radically different designs. So 
methods are important although they are left to 
the user’s discretion by the UML language, and 
no mentioned in the document on SysML. Even 
though methods are more important than 
diagrammatic representations they are not being 
considered in the design of SysML. Methods 
are the means of our traversing the design 
landscape. Diagrams are our means of 
representing some aspect of what we see there. 
We need many diagrams so render a design in 
some region of the design landscape. There is 
an essential fragmentation of design 
representations because there is the singularity 
of Hyper Being at the center of the tetrahedron 
of viewpoints and minimal methods. That 
singularity amounts to the embodiment of 
Hyper Being that is the essence of software. If 
we are designing things with no software in 
them then at most we only have to deal with 
Process Being. But the fact that our systems 
contain software elements not merely 
mechanical and electrical elements then we are 
forced to deal with the nature of Hyper Being 
which is essentially difficult to think about and 
fragments our representations. Difference as 
differing and deferring appears in the interstices 
between the diagrammatic views. The theory of 
the software design has to connect the various 
representations and bring them into coherence 
in spite of the fact that they are fragmented 
essentially. None of the theorists attempt to 
explain why we need different diagrams to 
represent a system. Many times as part of 
viewgraph engineering we present very complex 
diagrams that attempt to convey the structure of 
the whole system, especially at the systems 

engineering level. But those diagrams are 
always over simplifications and are too 
complicated to be helpful in many cases. 

 

If we understand that our representations 
function at a very low level of Pure Being and 
are attempting to get their arms around things 
at a very high level of Wild or Ultra Being then 
we can get a proper perspective on why the 
representations tend to fail to convey the 
essence of the design as Naur claims. The 
essence of the design is that which gives it 
synergy which is essentially non-computable 
but which is what allows the system to have 
unexpected emergent properties in the end. 
Human beings must to these designs because 
only they are capable of entering these non-
computable territories where synergy can be 
wrested in order to produce emergent 
organization in the built system. If we were 
smart we would always keep this context of 
UML and SysML in mind. They do not even 
address the hard problems, they are merely 
scaffolding at the easy level were we can create 
representations in single diagrams. Things start 
to get hard when we are exploring the design 
landscape with these diagrams and when we are 
navigating our design, that is when we 
encounter Process Being. Things get harder 
when we encounter the necessity of bridging the 
gaps between our diagrams which makes us get 
lost in our own creations and when we 
encounter the possibilities within the design 
landscape as panoramas of possible designs. 
The current representations do not help us 
navigate the design landscape easily, and they 
do not allow us to represent our designs 
compactly so as to reduce the showing and 
hiding that is necessary to navigate the design. 
Textual design languages would help us in both 
of these respects. Textual design languages are 
more compact and pack more meaning per 
symbol into the text of the design description. 
By textual design languages I mean 
Implementation Specific Languages that 
implement minimal methods and mimic UML 
or SysML graphics. They make it easier to 
navigate the design just as you would navigate 



A Critique of SysML from the point of view of General Schemas Theory -- Kent 
Palmer 

6 

code you have written. It would be nice if this 
text could be transformed automatically into 
UML diagrams which in their expanded form 
might make it easier for the one learning the 
design to see how things related to each other. 
But for the practitioner who knows the design 
the most compact form is preferable. But 
textual languages based on the concept of the 
fundamental viewpoints and the minimal 
methods also help with another fundamental 
problem. It turns out that the different minimal 
method diagrams are slices of Turing machines. 
So they are describing the computable system 
being designed. That system being designed 
embodies a singularity of Hyper Being, and the 
diagrams of the minimal methods attempt to 
abstract views of that singularity that can be 
understood. The computable system being 
designed has a certain synergy that is encoded 
into it from a viewpoint beyond computability, 
that is why we can produce emergent effects 
within such a program. If we could not step 
outside computability then we could not 
produce emergent effects. So the fragmentation 
of the minimal methods as diagrams and the 
traversing them is the means by which we move 
to all sides of the singularity of Hyper Being in 
order to get views on all sides of it and thus we 
are able to project our synthesis of our design 
onto the implementation which will embody that 
singularity in programming code. At that level 
there are many displacements of elements that 
at the design level are compact that are smeared 
out though the actual implementation of the 
system in code. The reason we have design 
languages is to attempt to view the system as a 
whole without these warpages that are induced 
by our implementation languages. When we 
move into the arena of non-computability then 
we encounter the opacity of Wild Being. That 
opacity appears as implementation specific 
techniques that we must resort to on many 
occasions to actually get the implementation to 
work. Many times we see these in our 
algorithms as incommensurable discontinuities 
which we find ways around we call hacks. 
Hacking is programming in the face of Wild 
Being, introducing work-arounds and ingenious 
solutions that are local to the problem we are 

trying to solve. These work-arounds do not 
appear in our designs, except perhaps as 
exceptional patterns of objects. 
 
We have noted that there is another perspective, 
that of requirements. That appears as another 
method called the Gurevich Abstract State 
Machine. It is based on representing the system 
as a set of rules. Rules as if… then…  statements 
contain all four viewpoints within them and 
thus the rule set that represents a system instead 
of fragmenting the system into diagrams 
fragments it into rules. The written 
requirements are turned into a Gurevich 
Abstract State Machine model and it is this 
model that is the dual of the design. It stands 
between the logos of the written requirements 
collected in a requirements database and the 
design made up of minimal methods. There is a 
series implicit here from: 
 

?? Requirements = Logos 
?? Gurevich Abstract State Machine 
?? Minimal Design Methods 
?? Implementation = Physus 

 
Notice that we are traversing between physus 
and logos. Physus is the unfolding of the 
executing implementation. Logos is the 
description of the system and what it should do. 
We can get views of the requirements using 
formal methods which are extensions of logic. 
In essence we use the three aspects of Being 
called Presence, Identity and Truth to construct 
these formal models. They introduce the 
properties of clarity, completeness, and 
consistency. However, we must add to these 
aspects yet another aspect called Reality. With 
reality we get the additional properties of 
Verification, Validation, and Coherence. This is 
where our need to do verification against the 
requirements, validation against the operational 
environment of the user, and the coherence of 
the integration of the pieces of the system all 
come from. Reality in model theory confers 
meaning. So it is only when the formal methods 
are introduced to the regime of testing that 
meaning of the system is generated. 



A Critique of SysML from the point of view of General Schemas Theory -- Kent 
Palmer 

7 

Verification, Validation, and Integration all 
come after the implementation and are 
considered the latter part of the lifecycle. The 
formal models of the requirements that we 
might produce with formal methods are rally 
scaffolding around the system that assures the 
ranges of inputs and outputs and perhaps flows 
truth values over the scaffolding to attempt to 
assure that the formal qualities of completeness, 
consistency and clarity are satisfied. However, 
with a Gurevich Abstract State Machine we do 
not need this scaffolding because we discover 
those properties about the system itself as 
represented in a Turing Compatible form at 
some high level of abstraction. Once we have 
that Turing compatible representation then we 
can undertake the design using different 
minimal methods and looking at the system 
from different fundamental viewpoints. But 
eventually implementation must occur were we 
engage in hacking around the problems that 
prevent our design from working at the level of 
code. Then once we have a computable 
representation then we engage in testing that 
implementation against the original logos of the 
requirements, against the operating environment 
of the user, and in terms of its own integration 
which belies its coherence. 

 

But all of this takes place in relation to a 
designer exploring a design space in order to 
find the synergetic sweet spots that will allow 
emergent properties to unfold in the 
implementation once designed. That designer is 
engaged in a non-representable and non-
computable enterprise. It is under sanding this 
context of design that we need to concentrate on 
because this is the hard unsolved problematic 
with which we are engaged. Deleuze talks about 
the opposite of representation in terms of the 
idea taken from Lacan and ultimately Freud of 
repetition. Repetition is that which does not 
repeat. In other words repetitions never achieve 
the goal of encompassing the singularity that 
they attempt to approach. Repetition is the 
rubric under which Deleuze talks about the 
whole problem of non-representability and non-
computability in Difference and Repetition. It is 

an extremely difficult subject that appears at 
the Meta-level of Wild Being. Deleuze and 
Guattari are building a philosophy at the level 
of Wild Being and so it is very pertinent to our 
exploration of these issues. But we don’t just 
want to apply the theory of Deleuze to the 
problem, rather we need a more fundamental 
way of approaching the problem which 
attempts to understand the role of non-
representability, non-computability, synergy 
and emergence in the design process. That will 
allow us to get a context in which to understand 
the UML and SysML languages and see how 
far they go in solving the problem that faces 
designers.  A fundamental question that must be 
addressed is whether Systems Engineering can 
follow Software Engineering by merely 
extending UML 2 for their own purposes? Will 
this address the fundamental concerns of 
Systems Engineering that must join hardware 
and software and other elements into an 
emergent system or system of systems? Is 
SysML the right direction for Systems 
Engineering to follow and is it enough? 
 
General Schemas Theory 
 
We will not introduce a new theory that will 
attempt to paint a larger context in which to 
understand the SysML/UML quandary. This 
new theory is a further generalization of 
General Systems Theory. We engage in 
Systems Engineering and Software Engineering 
building “Systems” but we hardly ever are very 
definite about what a “System” really is. 
System as a word is applied to everything and 
thus has very little meaning. In order to 
understand the meaning of a system we need 
some context within which to understand it, and 
that context must be all the other schemas of 
the type that a system purports to be, such as 
form, pattern, eco-system, domain, world, etc. 
There are a series of schemas that form a scalar 
hierarchy and the term system designates a 
threshold of spacetime organization near the 
center of this hierarchy. If we want to 
understand the nature of what we are designing 
a very good place would be to start with the 



A Critique of SysML from the point of view of General Schemas Theory -- Kent 
Palmer 

8 

emergent hierarchy of the schemas and to 
understand the relations of the schemas to each 
other. So General Schemas Theory does what 
General Schemas Theory of Bertalanffy does at 
an even higher level of abstraction. That is to 
say it searches for embodiments of the schemas 
in various disciplines and then attempts to 
establish functors between uses of the same 
schema in various disciplines. General Schemas 
Theory will consider the natural 
transformations, i.e. meta-functors between 
schemas. There is naturally something higher 
than the General Schemas Theory that looks for 
modifications of schemas. These modifications 
appear in the difference between General 
Schemas Theory and Special Schemas Theory. 
Thus we can use Mathematical Category 
Theory to distinguish the various levels of 
Abstraction that differentiate the schemas 
within a discipline, from the schema across 
disciplines, from the differences between the 
schemas as such, and their modifications. But 
in this article we will not deal with the higher 
level meta-categories. Rather we are interested 
in the schemas themselves and how they relate 
to other  important elements of our worldview 
that makes possible emergent system design.  

 

A fundamental distinction already made is 
between physus and logos. Logos are unfolding 
thoughts and words, i.e. design, and physus is 
unfolding things, such as executing operational 
systems. This is a fundamental distinction 
within our worldview. But we can go on to 
think about the relation between this dichotomy 
and the non-dual of order. Order appears both 
in the realm of words and the realm of things. 
Order is the bridge by which we relate our 
theories to the physical world in science. The 
production of the non-dual of order is Mathesis. 
But we must ask what the meta-level of physus 
and logos might be. The logos of logos is 
grammar. The physus of physus is the laws of 
physics. But there is also another question we 
might ask as to the nature of the physus of 
logos and the logos of physus. The physus of 
logos has to be logic since it is the inviolable 
necessity which if we violate our speech 

becomes non-sense. On the other hand the logos 
of the physus are the schemas. And here is 
where we see the rub. We know a lot about 
Mathesis and Logic but we know hardly 
anything about the schemas. Schemas were 
introduced into our tradition by Protagoras and 
Plato, and Aristotle, Kant and Heidegger all 
thought about them. But the schemas have not 
been developed in our tradition to the same 
degree as the Logic or Mathesis. And so that is 
why we are having a hard time coming to terms 
with our need to understand systems 
engineering methods and languages. In systems 
engineering we are doing design which is a 
projection of order on to things. Schemas are an 
intrinsic projection of orders involuntarily onto 
things at the same time we project spacetime 
onto them. These intrinsic pre-orders are 
exactly what we use when we engage in design. 
They are the unconscious basis of design, that 
we project prior to the design on to things and 
which the design follows as we project it.  
 
Between Mathesis and Logic is Mathematical 
Model Theory. Between Logic and the Schemas 
are the Philosophical Categories. Between 
Mathesis and the Schemas are Representation 
and Repetition Theory. So from that we can see 
where SysML and UML fit. They are 
representations of forms within systems. Each 
diagram relates several forms to others by 
specified relations. Since a system is defined as 
a set of things and their relations that is why the 
diagrams are effective in showing the internal 
structure of the system. But these 
representations such as UML 2 and SysML 
only function in the wider context of this 
ontic/ontological triangle. Unless we bring to 
bear the other parts of the triangle then we will 
never understand the true situation in which our 
design of UML 2 or SysML must take into 
account to be successful. 
 
What is necessary is that we start over and 
attempt to understand the full context as it 
bears on the UML/SysML representations. The 
first point to be made is that the system and 
form are not the only schemas that exist. 



A Critique of SysML from the point of view of General Schemas Theory -- Kent 
Palmer 

9 

UML/SysML are focused on form and their 
relations and by that hope to portray the 
internal workings of the system. This is not 
based on any well worked out systems theory, 
such as that of George Klir in Architecture of 
Systems Problem Solving but in stead has no 
real foundation. It is just an intuitive guess that 
these are the diagrams that are helpful and that 
it is this set of diagrams that will portray 
everything that needs to be said to give a full 
picture of the design of a system. It would be 
nice if there were a more solid foundation to 
UML. As it is the new version of UML merely 
cleans up the meta-level of the language and 
attempts to solve some of the inconsistencies in 
the model, also incorporating real-time elements 
from Objectime. But the actual elements that 
are present in the language are merely those 
built up over time as historical development and 
personal opinion of the designers of the 
language based on refinements of previous 
methodologies. No real argument is ever given 
why these elements and not others. It turns out 
that from a practical stand point the elements 
are very close to the set of minimal methods 
because of the pragmatic testing over time of 
these diagrammatic techniques. However, 
pragmatic testing is endless and the refinement 
process may take a long time, and there is 
nothing to guarantee that something essential is 
not missing. Thus it is amazing that there have 
been very few studies of the foundations of 
these techniques with an attempt to give deeper 
reasons why individual elements are included or 
not included. Founding the techniques of 
Systems Theory as I have done in the ISEM 
language is one way to make sure that the 
diagram set is complete and consistent rather 
than merely an ad hoc combination of elements. 
The basis which I have attempted to give the 
methods is based on the idea that the diagram 
offer slices of the Turing machine and that is 
how they can represent a computable system. 
But the Gurevich Abstract State Machine and 
the Minimal Methods are duals of each other, 
and it is that duality that helps to show 
completeness. Understanding the underlying 
computational mathematics of the Turing 
machine and how it is generalized in the 

minimal methods could provide a solid basis for 
UML/SysML. 
 
But there is a more general problem which is 
that form and system schemas are not enough. 
This is to say that there is a whole hierarchy of 
schemas rather than merely two and if we only 
use form and system then we are severely 
restricting our toolset unnecessarily. What we 
must realize is that there is a whole hierarchy of 
schemas which include the following emergent 
hierarchical levels of organization: 
 

?? Pluriverse 
?? Kosmos 
?? World 
?? Domain 
?? Open-scape (meta/infra-system) 
?? System 
?? Form 
?? Pattern 
?? Monad 
?? Facet 

 
This set of levels is a working hypothesis but 
the key point is that each one has its own 
organization and presumably its own minimal 
methods and viewpoints that are true to its own 
organization. A really robust methodological 
tool set would allow the designer to use any of 
these schematic levels to support his design as 
necessary. Most important of these levels from 
the point of UML is that of Form and System. 
This is because software is essentially a pattern 
of ones and zeros. But applying syntax via the 
technique of Chomsky we are able to raise 
ourselves up from the pattern level that 
software naturally resides at to the level of 
form. Languages define software operators and 
statements which give form to the pattern of 
monadic ones and zeros. Through languages we 
then abstract up to the level where we describe 
the design in terms of objects or functions. We 
produce relations between these objects or 
functions in order to create systems. Implicitly 
these software systems interface with software 
environments and hardware environments when 



A Critique of SysML from the point of view of General Schemas Theory -- Kent 
Palmer 

10 

they execute. These software and hardware 
environments are called meta-systems or infra-
systems which together form open-scapes. One 
thing that comes out very clearly in software 
engineering is the important role of the 
“operating meta-system” [sic] as the 
environment for computing application systems. 
Fortunately there is a good formalism for this 
distinction in the difference between the Turing 
machine and the universal Turing machine. The 
universal Turing machine reads other Turing 
machines from tape and executes them. The 
difference between the Turing machine and the 
universal Turing machine as operating meta-
system is that the operating system does not 
stop. Instead of a halting problem there is a 
problem if halting occurs, i.e. the computing 
system as a whole must then be rebooted. So in 
the computing field there is a good 
formalization of the difference between the 
system and the meta-system. But generally in 
language there is no good word to describe the 
meta-system. Thus I have coined the word 
open-scape. I define the open-scape as the 
environment or eco-system with niches that the 
systems fit into. It is a panorama seen from a 
single point in the landscape which has only one 
horizon. It is the context where the system is 
fixed within the environment. The open-scape is 
composed of the meta-system and its dual the 
infra-system. The infra-system is composed of 
the system and super-system envelopes and the 
possibility of holes in the meta-system. The 
meta-system is the gap between the system and 
super-system envelopes. As the meta-system is 
what is seen looking out from the system 
toward the panorama of its environment the 
infra-system is what is seen looking inward. We 
posit that in the nesting of the sub-system, 
system and super-system envelopes that the 
meta-systems are the gaps between these 
envelopes but looking outward from each lower 
nesting. The infra-system is the inverse of the 
meta-system and actually encompass all the 
elements not associated with the gaps between 
the hierarchical nested system envelopes. Thus 
a system exists in a meta-system provided by 
the super-system just as the sub-system exists 
in a meta-system provided by the system. In 

each case the higher system provides the 
operating meta-system within which the lower 
system exists. The infra-system relates the 
interfaces between meta-systems to each other 
and to the holes that are not niches within the 
meta-system. When we have both views, the 
meta-system view outward and the infra-system 
view inward then we have the open-scape which 
balances the panorama from the viewpoint of 
the static system within the meta-system with 
the interfaces and holes in the meta-system1. 
 
What is key is that we have a good view of the 
relation between systems and open-scapes 
(meta/infra-systems) and that we also have a 
view of the higher level schemas such as 
domain, world, etc. The systems that we are 
building today need more than the system and 
form schemas in order to support their 
complicated nature. But more than that, the 
synergetic effects that lead to emergent 
properties must take into account the 
organization of the schemas themselves because 
it is the schemas that underlie our designs. The 
schemas are projected on nature as ways of pre-
understanding it involuntarily by us. Science is 
the process of looking for the anomalies in our 
projections and attempting to understand the 
order of things that is beyond our projection of 
the order of the schemas which we presume. 
But when we design the anomalies only show 
up when our designs interact with their 
operating environments (i.e. meta-systems). So 
there is a stronger basis for the schemas in 
design than within science. Of course science 
and engineering are intertwined. Engineers 
build the instruments that scientists need to 
perform their experiments. Engineers use 
scientific principles as a basis for their designs. 
Building technology and the knowledge of 
nature garnered by scientists go together and 
are interdependent. There should not be a 

                     
1 See “A Dialectical, as well as Geometrical and 
Algebraic, Model of System and Meta-system 
synergies.” SETE 2004 at http://holonomic.net also see 
“Towards a Possible Approach to Metasystems as 
Escapements : On a Simple Geometrical and Algebraic 
Representation of Emergence” 



A Critique of SysML from the point of view of General Schemas Theory -- Kent 
Palmer 

11 

master-slave, i.e. dualistic, relation projected 
between engineers and scientists. Rather 
building technology and collecting knowledge 
of nature are complementary enterprises. But in 
both cases we must know our own projections 
of schemas which are developed in individual 
disciplines and are not usually generalized 
across disciplines. General Schemas Theory 
attempts to follow General Systems Theory in 
developing cross discipline generalizations for 
all the schemas and then goes on to compare the 
various schemas to each other. Systems 
Engineering needs to become Schemas 
Engineering just as Systems Theory needs to 
become Schemas Theory. In other words we 
need the higher levels of emergent organization 
as a resource in our building of more and more 
complex designed artifacts of global reach. So 
the first and most fundamental problem with 
UML/SysML is the fact that it does not treat 
higher schemas that are needed, but crucially it 
does not separate the meta-sytem from the 
system in a clear way and also does not 
represent the domain level. We need to step up 
the levels of schemas one at a time. If we had a 
UML/SysML that was grounded on the 
understanding of the relation of our diagrams to 
the Turing Machine, then we could build on 
that to understand how to model environments 
and eco-systems of computing and physical 
systems and then continue to understand their 
operation in domains. At the level of the world 
is where the interface with humans becomes 
crucial as Heidegger teaches us in Being and 
Time where he differentiates between Ready-to-
Hand and Present-at-Hand modalities. 
Heidegger calls the human dasein (being-in-the-
world) which we can generalize to being-in-the-
schema. It is the ecstasy of dasein that 
overflows into the higher dimensional schemas 
which are the higher organizations of our world 
and which allow organizational structures that 
can carry the load of greater complicatedness 
that we find in our systems. It is also these 
higher dimensional structures that are the secret 
to the greater synergies we need to infuse into 
our designs. However, this means that we must 
transition into the non-computable realm 
identified by Robert Rosen associated with life 

in order to reap those synergies. The design 
space is that non-computable landscape within 
which the synergies of emergent systems appear 
as sweet spots. We need to be able to explore 
that landscape of design in order to find those 
knees of the curves of parameters that are 
optimal and our access to those non-
computable higher dimensional spaces are the 
higher schemas. The meta-system marks the 
limit of computability with the form of the 
Universal Turing Machine. As soon as we pass 
into the level of domains then we find a 
fragmentation of perspectives which is non-
computable. We gain multiple perspectives 
when we move in our environment, and it has 
long been known from the time of Zeno that 
movement is inherently contradictory. Thus 
there is a wall that prevents computation on a 
grand scale beyond the meta-system level. 
Rather computation breaks up into fragments 
called agents which live in networks of 
connected computers. This breakup becomes 
even worse at the level of world, where 
formalisms breakdown, and produce a 
fundamental barrier between Artificial 
Intelligence and Human Intelligence. Human 
intelligence is transparent, because it is a 
projection on the world that comes from us, 
while Artificial Intelligence Techniques are 
inherently opaque. Live, Consciousness, and the 
Social can be mimicked but cannot be 
reproduced due to an intrinsic barrier to 
computability. They in fact live in a space of 
non-computability. But the fact that it is not 
computable does not mean that there is no 
structure there. In fact there is higher 
dimensional organizations of the schemas that 
give these higher dimensions transparency to 
our understanding in spite of non-
computability. When we do design we are 
facing this frontier of the non-computable and 
attempting to find niches in which computation 
can help and support human understanding. But 
now we are operating blind because we do not 
understand the intrinsic nature of the schemas 
and their differences with each other and their 
relations to each other. Rather we are facing a 
world with the ideal that everything can be 
reduced to the computational metaphor. We 



A Critique of SysML from the point of view of General Schemas Theory -- Kent 
Palmer 

12 

build larger and larger more complicated 
systems and produce synergies of such systems. 
But they are inherently difficult to build and to 
operate and maintain. But when we manage to 
get them to work with their emergent properties 
in tact then we get high leverage from them in 
terms of the global reach of our action and 
other substantial benefits. But I believe that if 
we understood the schemas and their nesting 
better then we would be able to build 
synergistic emergent artifacts using multiple 
schemas better and that they would be more 
useful and give greater leverage with less 
harmful effects on the greater environment and 
higher levels of organization of life on the 
planet. 

 

So the fundamental critique of UML/SysML is 
that they only represent the Form and System 
schemas rather than all the various schemas, 
and that they have no foundation, but are 
ultimately an arbitrarily collection of 
diagramming methods that are merely 
historically and pragmatically engendered. The 
tie between the diagrams and the minimal 
methods can be achieved as I have done 
previously with systems theory and the concept 
of the minimal methods as slices of a Turing 
machine. Building on that formalism then we 
can extend to the meta-system by using the 
duality of the Turing machine and the Universal 
Turing Machine. But then we have to recognize 
that computability itself deteriorates at the level 
of the domain and world and other factors 
become more important. For instance, there is 
Aspect oriented programming which attempts 
to solve some of the problems that are domain 
related. Various work arounds that allows us to 
confront the fundamental non-computability of 
higher dimensional schemas need to be explored 
and understood in a context of General 
Schemas Theory that recognizes the intrinsic 
nature of the various schematic organizations. 
Non-computablity first appears as the fact that 
computing cannot be context free. It must take 
into account the meta-systemic environment. 
Then non-computability appears as the 
indeterminateness of swarms of agents with 

different viewpoints acting together that we get 
at the domain level. Finally at the level of the 
world we get the structure of dasein who 
projects Being as intelligibility. Intelligibility is 
not the same as computability. This is the 
fundamental problem with Cognitive Science 
which wants to see the human mind through a 
computer metaphor. But computability is a 
reduction of intelligibility. We can see that 
clearly because the AI techniques compute 
something but that process is always opaque to 
us. So computability becomes more and more 
alien to us as we add AI techniques together. 
From this premise we get Venge’s idea of the 
Technological Singularity which is the point 
where the Alien Intelligences of the computing 
devices becomes more intelligent than we as 
human beings. This assumes that there is a 
class of intelligence that encompasses both the 
alien opacity of Artificial Intelligence and our 
own founded on our nature as dasein. This is a 
premise that has not been proven. Beating chess 
masters by searching all possible moves is very 
different than beating them based on insight. 
Insight is the nature of our intelligibility that we 
project on the world primarily on the basis of 
the pre-projection of schemas. Outsight might 
be used to describe the alien intelligence based 
on opacity, if that is what it is. All 
computations based on parameterized functions 
are merely external mimicry of intelligence. But 
they are not real intelligence outside the narrow 
bounds of the computational problem being 
solved. Change the environment and the 
situation and the apparent intelligence vanishes. 
Human beings have a robust adaptability that is 
based on intelligence part of which comes from 
the projection of the schemas which are higher 
dimensional organizations on to a lower 
dimensional spacetime environment. Our ability 
to step up through the dimensions, meta-
dimensions (standings), meta2-dimensions 
(aspects) and even higher metan-dimensions is 
what singles us out as human beings in as much 
as we are freed in an ecstasy into higher and 
higher metan-dimensions that are finite but on 
the background of an infinite expansion of 
those metan-dimensions. It is our ability to 
stand off in the next higher meta-dimension that 



A Critique of SysML from the point of view of General Schemas Theory -- Kent 
Palmer 

13 

allows us the intelligence that cannot be 
achieved in what is computable. Computability 
is trapped at the level of system and open-scape 
at the level of the dimensionality transposed 
into the emergent levels of the schemas. But 
computability cannot span even to the higher 
schemas less well into the standings of the 
meta-dimension or the aspects of the meta2-
dimension, etc. Intelligence is able to move 
within the meta-dimensions in a finite way and 
that is what makes us unique and what makes it 
so cognitive science can never reduce us to the 
computational metaphor. This is important 
because as designers we enter the non-
computational and non-representable realm and 
come back with representations and 
computations that have synergies that allow 
emergent properties that would not exist 
otherwise and are not produced in nature. We 
can only scale into the non-computational and 
non-representable realm because we have the 
intelligence that allows meta-dimensions to be 
transparent to us. The designer confronts these 
meta-dimensions all the time and we must 
understand that if we are to design tools and 
techniques to assist the designer. There is a 
hope that someday we will be able to produce 
designs with genetic algorithms. Koza shows 
how he has done this in the realm of antenna 
design reproducing some patents and creating 
new possible patents. But we can only reduce a 
realm to computational design using AI 
techniques like Genetic Algorithms because we 
can see beyond these techniques to define the 
realm of the problematic within which these 
techniques will operate. This seeing beyond is 
based on our finite climbing of the infinitude of 
metan-dimensions, as schemas, standings, 
aspects and other structural layers of the 
Western worldview.  
 
Philosophical Category Theory 
 
Once we understand the horizon of the schemas 
we can begin to move around the 
ontic/ontological triangle and attempt to say 
what the implications of each part of that 
triangle is for the UML/SysML representations. 

We will move around it in the opposite 
direction from the representations so we run 
into the representations last. So the next point is 
the relation of SysML to the Philosophical 
Categories. These are the highest concepts and 
have been identified by Aristotle and Kant. 
They include things like causality and 
part/whole relations. It is the categories that 
connect Logic to the Schemas. That is because 
the schemas represent pre-synthesis of things, 
i.e. the ontic, projected from the ontological and 
logic has variables in propositions that need to 
be filled in. So the schemas represent what the 
place holders that might be filled in. But more 
than just logical relations may hold between 
things in the world so it is the categories that 
specify these highest level relations like part-
whole and causality that are relations that might 
hold between things in the world. The 
philosophical categories are in fact not settled, 
in fact they have been an ignored part of 
philosophy for the most part. The best recent 
category theory is that if Ingvar Johansson in 
Ontological Investigations. But we must always 
refer back to the categories of Kant and 
Aristotle to keep our bearings. Kant said that 
the schemas were the temporalization of the 
categories. That is a very important point 
because time and space are a priori projections 
for Kant. The schemas are to him the 
refinement of that projection of space and time 
in line with the highest concepts, i.e. the highest 
tools of intelligibility. That is why we call the 
schemas templates of intelligibility. But it is in 
the schemas for Kant that time is mixed with 
pure Being of the categories. This is a very 
interesting point. Johansson on the other hand 
assumes spacetime and the very next category 
is the state of affairs. So Johansson is skipping 
over the role of the schemas, because we would 
say that the schemas are the dimensional 
differentiation of spacetime and that all states 
of affairs appear already within particular 
schemas. But all dimensional objects are 
anamorphs because they are in two schemas at 
the same time. The different organizations of 
the schemas nest into one another in such a way 
that there are two dimensions for every schema 
as well. But since the category scheme is 



A Critique of SysML from the point of view of General Schemas Theory -- Kent 
Palmer 

14 

unsettled and none has been selected by the 
designers of UML and SysML then it is 
uncertain what the structure of intelligibility is 
at its highest level. This is another grounding 
problem not even solved by applying cognitive 
science to the problem of design. Cognitive 
science itself is ungrounded in this respect also. 
If we do not know the fundamental shape of 
intelligibility then how can we design tools to 
help us make designs more intelligible. Implict 
in these tools are a philosophical stance on the 
shape of intelligibility and that stance is more 
or less a reductionist one. In other words it 
assumes that we must limit separate the 
methodologist from the designer. Designers 
must follow the instruction of the methodologist 
in a master-slave dialectic. Thus the creativity 
of the designer is constrained from making up 
new tools on the spot to solve problems 
encountered in design. This limitation of the 
creativity of the designer to both design his 
object but to design the means of designing is 
not necessary. We are instead in favor of user 
extensibility of the diagrammatic tools and the 
methods. UML allows extensibility but it 
assumes that that extensibility is for the 
methodologist not the designer. On the other 
hand we believe that every designer must also 
be a methodologist. That is because 
methodology means “the way after” in other 
words it is a method for leaving a trail so others 
can follow you, it does not tell you how to cut 
the trail. Feyerabend was right about this point 
that in effect anything goes with respect to 
methodology in science. This is the ultimate 
pragmatic stance. It is precisely the stance that 
is needed to solve really hard design problems 
and placing artificial barriers before the 
designer does not help but rather hinders his 
progress.  
 
So it is suggested that UML/SysML designers, 
Methodologists, and designers need to be aware 
of their categorical assumptions about the 
macro-structure of intelligibility in order for 
SysML and UML to be of maximum use 
without introducing artificial barriers to 
intelligibility of design. 

 

The connection between logic and schemas via 
the philosophical categories is the normal 
projection route which we see in Aristotelian 
science. Post-Aristotelian science takes instead 
the long root via mathematics through model 
theory and representation theory. Aristotle 
thought that he could capture each category as 
a way of speaking about a thing (substance). 
He thought that the human living systems 
applied to everything in the universe, and thus 
he projected the human world on the physical 
world. His view held sway for a long time 
without anyone realizing that it’s anomalies 
were nature speaking to us of a different order 
than the human living order that Aristotle 
naturally projected and which was followed for 
so long without challenge. But eventually with 
Galileo and Newton and others through the use 
of math it was possible to see that physical 
nature that was not living and conscious and 
social had a different form that Aristotle 
assumed. So after talking about Logic we need 
to follow the route of science which is indirect 
projection rather than direct projection of the 
human sensibilities onto nature. 

 

Logic   

 

SysML and UML is not a formal method even 
though it is a formalization of design. Formal 
methods like Z, VDM and others erect a 
scaffolding around the system to be built so that 
it can be tested against that scaffolding. Formal 
methods have logic built into them, while with 
SysML and UML the logic remains that in the 
designers head. But what we need to realize is 
that normal traditional logic is not enough. We 
need to apply deviant logics in order to 
understand real world phenomena that are made 
up of contradictions and paradoxes. Anything 
that moves is a contradiction we have known 
since Zeno. All our systems that we deploy 
move in some respect. So all real systems 
embody paradoxes. Many elegant methods are 
used to get around these paradoxes as we can 
see in TIZZ [?]. But we can apply NS 



A Critique of SysML from the point of view of General Schemas Theory -- Kent 
Palmer 

15 

Hellerstein’s Diamond Logic2 as a way to 
represent these paradoxes. There are other 
deviant logics that are useful like the Matrix 
Logic3 of August Stern. These deviant logics 
need to be explored in order to discover a logic 
that will describe the interface with the real 
world rather than merely one that is applicable 
to the analysis of formal models. In my paper 
on Vajra Logics4 I advocate a logic that uses all 
the aspects of Being, i.e. presence, real, 
identity, and not just truth as a superscript on a 
proposition. Much work along the lines of 
Situational Logic needs to be done and 
combined with our work on representation in 
order to be able to reason with our 
representations. At the moment we can reason 
within our own formalisms but we cannot 
extend those reasonings very well to our design 
products. This is an area where a lot of 
research needs to be done which has not even 
been begun. 
 
Model Theory 
 
Logic connects to Mathesis via Model Theory. 
Models represent all the statements that can be 
made about a mathematical category. Model 
Theory attempts to build a vision of semantics 
from a mathematical perspective. Model 
Theory needs to incorporate all the aspects of 
Being. When we add reality to the other aspects 
implicated in the construction of formalisms, 
i.e. identity, presence and truth, then from that 
mix meaning is generated. That means that 
meaning occurs when our formalisms come into 
contact with the world through testing. To the 
normal properties of clarity, consistency and 
completeness are added the properties of 
verifiability, validity, and coherence. Coherence 
is where the synergies that allow emergence to 
appear are packed and it appears in the process 
of integration. Systems Engineering is supposed 
to build a set of requirements, and a ConOps. 
The ConOps is used for validation purposes 
                     
2 World Scientific 1997 
3 North Holland 1988 
4 “Vajra Logics and Mathematical Meta-models for 
Meta-systems Engineering” INCOSE 2002 

and the requirements set for verification. Then a 
functional or object oriented design is created 
and that is allocated to a physical architecture. 
Then it is that physical architecture that is 
implemented by software and hardware 
specialties. It is the implementation that the 
systems engineer takes and verifies and 
validates and checks the coherence of before it 
is released to the customer. So from this we can 
see that the Systems Engineer makes a formal 
model of the system first, then this is 
implemented, and then he does the reality check 
on the implementation. By the way his job in 
the mean time while implementation is going on 
is to be the steward of the interfaces to make 
sure the system remains coherent, not to vanish 
to another program during implementation. At 
any rate we can see that model theory sets the 
stage for the structure of the work of the 
systems engineer. The meaning that arises in 
the testing of the model of the system is in the 
surprises that arise from the defects found in 
the system. Surprise is information. 
Suppressing the defects produces negative 
information. Rather we want to find all the 
defects as early as possible. That is why it is 
surprising that Systems Engineers rarely do 
peer reviews of their documents as Software 
Engineers have learned to do.  
 
What is even more surprising is that they resist 
building a model that can formally represent the 
system with the Gurevich Abstract State 
Machine method that could be reviewed like 
code is reviewed by software engineers. gASM 
models can be executed and thus there is an 
existence proof when they are complete and 
consistent. There is something like lines of 
code, i.e. rules that can be counted that Systems 
Engineers could use to measure their 
productivity. Thus there is a model missing in 
the Systems Engineering world that has not 
been recognized yet. That model exists as a 
bridge between requirements in words and the 
design from the various viewpoints that 
generate the minimal methods and give rise to 
the diagrammatic representations of UML and 
SysML.  



A Critique of SysML from the point of view of General Schemas Theory -- Kent 
Palmer 

16 

 
I advocate the use of the gASM method by 
Systems Engineers to make semi-formal models 
of the systems to be build so that the properties 
of those models can be tested prior to 
implementation. It is an extra step, but it is 
really a more important step than doing 
UML/SysML models are at the next lower level 
of abstraction and we first need models at a 
higher level of abstraction, that in which the 
whole system is encapsulated in a hand full of 
rules that is expanded out in a stepwise 
refinement to an appropriate level of 
abstraction as Börger5 suggests. By rights an 
gASM model should be created before any 
UML/SysML model is created because it is the 
gASM model that the UML/SysML model 
should be compared against. They are duals of 
each other. Note they are on opposite sides of 
our ontic/ontological triangle. We use reason to 
think about the properties of our simi-formal 
gASM model. Reason is different from logic in 
as much as it considers the reasons for things 
rather than merely their connections. Thus 
reason uses model theory as its tool. gASM 
uses the philosophical categores that give us 
causality and relates that to entailment in logic 
concerning the objects found in math. gASM is 
an abstraction of the Turing Machine at a high 
level of abstraction. So reasoning using gASM 
ties together several parts of our 
ontic/ontological triangle in an interesting way. 
Model theory is about all the possible ways that 
logic can talk about categories in mathematics. 
Reasoning takes these ways of talking about 
mathematical categories and connects causality 
and other philosophical categories with 
entailment in logic as constrained by the 
characteristics of the mathematical categories. 
Then when we apply this to gASM we find that 
we are reasoning about a model of the system 
which we can refine to any level of abstraction 
we like by stepwise refinement. It is at a larger 
scale than the diagrammatic methods that are 
harder to reason about because reason must 
                     
5 Egon Börger and Robert Stärk, Abstract State 
Machines: A Method for High-Level System Design and 
Analysis.  Springer-Verlag, 2003. 

deal with one diagram at a time. Here we can 
deal with the whole gASM model at once. But 
each rule contains a fusion of all the viewpoints 
that generate the diagrams of the minimal 
methods. So there is something higher than the 
UML/SysML level of representation that is 
closer to the logos and further from the physus 
that we should explore first before the 
UML/SysML modeling. This higher level 
model allows us to assign to each statement of 
the gASM model truth, reality, identity, and 
presence superscripts. We can construct models 
not just of the system but of its meta-system 
and of other systems within its meta-system. 
We can thus create the test environment that 
complements the system to do automated 
testing. What is more these gASM models can 
be built in Expert Systems Shells that failed for 
use as knowledge machines or one can use the 
specialized language AsmL for gASM6. So the 
technology for implementing gASM already 
exists. In fact that technology could be used to 
implement running simulations of gASM 
models. So our next critique of UML/SysML is 
that it is missing its dual, which is the gASM 
model that precedes it and that should be a 
bridge between the requirements and the design. 
The UML/SysML models come too soon, and 
only because the UML modeling system exists 
already from the needs of Software Engineers. 
The systems level is emergent over the software 
and hardware levels. It has its own organization 
and we see that in the duality between the 
gASM model and the UML/SysML models. 
We can see that our ontic/ontological triangle 
actually brings these two models together as me 
move from direct to mediated projection. If we 
had not developed the ontic/ontological triangle 
as a context we would never have realized that 
there is a dual to the UML/SysML model. That 
dual is not as important for Software and 
Hardware than it is for Systems Engineering. It 
is part of the emergent synergetic organization 
of the Systems Engineering level of abstraction 
that the gASM model becomes more important 
at that level and the connection between 
mathesis and logic becomes more important 
                     
6 http://www.research.microsoft.com/foundations/asml/ 



A Critique of SysML from the point of view of General Schemas Theory -- Kent 
Palmer 

17 

through the connection with Model Theory. 
Model theory connects us to the Aspect of 
Being and shows us the importance of the Real 
in relation to the other aspects of Being related 
to formal models. If we bring into this milieu 
the Turing machine as a modeling tool and 
represent it abstractly then we can begin 
reasoning simi-formally about the system or 
meta-system using the Vajra Logic. It is model 
theory that represents all possible lines of 
reasoning about a category like sets using logic. 
When sets are manipulated by a Turing 
machine then we have a model of a system or 
meta-system. Model Theory forms the 
mathematical backdrop of our possible 
reasonings which then we fulfill by actually 
reasoning about the system or meta-system in 
terms of its properties like clarity, 
completeness, consistency but also like validity, 
verifiability, and coherence. These later 
properties arise from the interaction of the 
formal model with the real, which we see 
occurring when the formalism is manipulated 
by a Turing machine. And it is precisely this 
interaction that is the business of Systems 
Engineering. Each element is a phase of the 
systems engineering process. We take the 
requirements which is the logos and then we 
would build a gASM model of them, if we were 
smart. Then we would reason about the 
properties of the gASM model until we found 
that that model had all six properties that are 
the relations between the four aspects of Being. 
Then we would move from that formal model to 
the functional and physical models of design 
that exist at the level of the UML/SysML 
designs. At that level we break up the whole of 
the system represented by the gASM model into 
its constituent parts that must have the synergy 
necessary to produce emergent effects. Once the 
design has been created and compared back to 
the model of the whole in gASM, then it could 
be given to software and hardware engineers for 
product and component design and 
implementation. You see there is now no model 
of the whole to compare the fragmented 
UML/SysML diagrams to. The gASM method 
gives us this model of the whole to compare our 
object/functional designs to in order to 

determine if the design adds up to more, the 
same or less than the whole modeled with 
gASM. So this duality between the model of the 
whole and the model of the parts is what is 
missing and it is this we would never see if we 
did not look at the problem from the viewpoint 
of the ontic/ontological triangle. 
 
Mathesis 
 
But this lack of the dual model of the whole to 
the UML/SysML model is not the only 
problem. There is a deeper problem that must 
be addressed which is the problem that a whole 
part of our mathematical categorical base is 
missing. This is to say that we have a 
mathematics based on sets. All the other 
mathematical categories are derived from sets. 
But there is a dual to sets which are called 
masses that are totally missing in our 
mathematics and this dual category is very 
important for Systems Engineering. The mass 
category contains instances that together form 
the basis of emergent effects at the mass level. 
Masses are constrained by boundaries. There is 
a type of reasoning with masses called 
Pervasion logic that is the dual of syllogistic 
logic applied to sets. Sets are brackets that hold 
inherently different particulars with attributes 
that differ from each other. We use universals 
to reason about the relation of particulars to 
each other via syllogisms. Sets are about 
difference and the emergent properties are at 
the particular level, while sets are just 
containers with no properties. Masses are about 
identity and the emergent properties are at the 
mass level while instances are all alike within 
the mass. A list is a combination of set and 
mass properties. A list is a fundamental 
computational structure. The solution (as in a 
mixture of masses) is the opposite of the list 
where the emphasis is on the mass like 
properties. An array is a combination of 
solutions and lists. This is to say that an array 
brings into account dimensions which are like 
the different masses that a solution combines. 
But within each dimension there is lists of 
elements that are aligned with the elements of 



A Critique of SysML from the point of view of General Schemas Theory -- Kent 
Palmer 

18 

other dimension by indexing. So computational 
structures are mostly combinations of mass like 
elements and set like elements starting from the 
fundamental duality of sets and masses that are 
missing from normal mathematical categories. 
We need to add to the Mathesis of set 
orientation another similar mathesis of mass 
orientation and all the combinations between 
the two. This is important to Systems 
Engineering because we are really talking about 
emergence engineering and sets alone do not 
help us understand emergence. Emergence is 
modeled best with masses that have properties 
that contain instances. Sets do not have 
emergent properties and thus it is hard to find 
them in the mathematics based on sets. The 
point is we design with set like objects but 
when instantiation and execution occurs then 
we have masses of instances of the various 
objects we have designed interacting.  We need 
a model of the interaction of instances in 
execution and the mass category gives us that. 
With that category in place we can transform 
back and forth between the emergent properties 
that appear in the executing mass of the system 
in operation, and the set like particular elements 
of design that engender those instances seen in 
operation. Systems Engineering deals both with 
the set-like design and the mass-like execution 
of the instantiation of the system in operation. 
We test the mass-like properties and we design 
the set-like elements that go into creating those 
mass-like properties. Systems Engineering at 
this point does not have this mathematical 
language to talk about its whole problem based 
on the mathematics that we currently have. The 
reason that Systems Engineering is an emergent 
discipline is that it is bringing out these flaws in 
our logic, model theory, mathematics that 
would not be seen otherwise because these 
disciplines have not traditionally interacted with 
the real world. Systems Engineers interact with 
the real world by fielding systems that have to 
operate in that world that do what the users 
want. Thus the Systems Engineer not only 
interfaces with the logos of the requirements 
but also the operational environment. He is also 
in charge of the integration of the pieces of the 
system and their internal coherence that results 

in synergies that produce emergent properties. 
All these ways if testing the implemented 
system are ways of connecting to the real by the 
formal models of the design. We should really 
talk about schematization instead of 
formalization, because we can “formalize” 
according to any of the schematic levels not just 
that of form. Thus there is patternization at the 
level of the pattern, systematization at the level 
of system, meta-systemization at the level of the 
meta-system etc. If we improve our 
mathematical categories by introducing the 
mass-like duals then we will give systems 
engineering a way of expressing emergent 
properties. And it is clear that there are kinds of 
logic associated with each of these approaches, 
i.e. syllogistic logic and pervasion logic. So 
there is not only a new way of reasoning about 
systems available but also we can use these 
mass like properties in our models, such as our 
gASM models as well. Thus our models can 
better express the holism of the system or the 
meta-system using constraint based logics 
rather than syllogistic logics. So in the 
improvement of our grasp of mathesis there is a 
trickle down effect to the rest of the 
ontic/ontological triangle where everything is 
modulated by the existence of the mass-like 
approaches in its associated logic. 
 
Representation and Repetition 
 
Finally we get back around the 
ontic/ontological triangle to the position that the 
UML/SysML representations occupy. But I 
think that our round about route has been 
helpful in showing what is missing in our 
understanding of these representations. But 
there is also something missing here as well. 
That is the difference between representation 
and repetition talked about by Deleuze based on 
the work of Lacan and harkening back to the 
use of the term by Freud. A repetition means 
that which does not repeat. This means that no 
amount of repetition at one level of emergence 
is going to produce the next level of whole at 
the next higher level of emergence. As we go 
down the dimensional hierarchy then we reduce 



A Critique of SysML from the point of view of General Schemas Theory -- Kent 
Palmer 

19 

by abstraction to create representations that are 
simpler than what is represented. But going up 
the hierarchy is more difficult because it is 
emergent and so that repetitions of 
representations will not achieve the emergence 
at the next higher level. This is a very important 
point that is not well understood by modelers 
using UML and SysML. Modelers think that 
their endless repetition of diagrams of minimal 
methods from different viewpoints will give a 
Pure Being view of the system. This is just not 
true. The very fragmentation of the diagrams of 
minimal methods themselves shows that this is 
not the case. If this was the case there could be 
one diagram that captures everything. But this 
does not work. Our human finitude prevents it. 
We can only see, absorb and understand so 
much at a time. So the fragmentation into the 
slices of the Turing machine by the viewpoints 
on the real-time system is essential. The system 
itself has an immanence that can never be made 
manifest. That is what makes its synergy non-
computable and non-representable. All the 
different views and the bridges between them 
merely mark this essential immanence of Hyper 
Being. The designer is looking at this synergy 
as a point of pure immanence in the design 
space and attempts to bring it out into the 
design which can be implemented so that 
emergent properties can appear. The fact that 
we need multiple models of the design places us 
in a complexity space not just a complicated 
space of simple Turing machines from the point 
of view of Robert Rosen. So the designers of 
UML/SysML need to be sensitive to the fact 
that no number of diagrams will capture fully 
the design, and that as Naur says the design 
theory is not just non-representable in 
documentation but also non-computable. This 
means that the UML/SysML diagrams are 
allowing us to see aspects of the system through 
a glass darkly. That is why we need to copare 
the model of the parts of the system that the 
minimal method diagrams give us with the 
model of the whole in gASM. By moving back 
and forth between these two duals we have a 
chance of seeing the mass-like whole and the 
set-like parts in a single vision of the system. If 
we just have the UML/SysML models then we 

are like the blind men feeling the different parts 
of the elephant. So the lesson from Deleuze is a 
sobering one that no amount of repetition will 
take you up to the next level of emergence. 
Rather the next level is a whole greater than the 
sum of the parts and it is described by Godelian 
statements that are detergent if left out of the 
system and emergent if included with the 
system. Another point is that the design is a 
point within the design landscape. That design 
landscape is like a meta-system with the 
properties that Batille associates with a general 
economy rather than a restricted economy. 
Knowing that the design landscape of 
possibilities is a meta-system as well as the 
environment that the system will eventually 
inhabit, however the design landscape is as 
Stuart Kauffman says much more vast. The 
landscape of possibilities is much more vast 
than the landscape of actualities. So we need 
easy ways to navigate this design landscape. 
UML and SysML do not give that to us 
because the representation is not compact 
enough, nor is it robust enough. It is pointed at 
the design of the system rather than the lay of 
the land of the design meta-system. What we 
need is a model of the design landscape within 
which we select certain synergistic spots to 
exploit in our embodied systems. UML/SysML 
help us define point designs but not whole 
classes of designs that fill the meta-system of 
potential systems. UML/SysML need to be 
expanded to help the designer cope with the 
vast landscape of possible systems so as to pick 
good enough systems and to approach 
optimality as close as needed. The landscape of 
possible systems is so vast that good enough 
systems are hard to find. UML/SysML do not 
go beyond the representation of the point 
solution. And they only allow that 
representation on the level of form. We have to 
intuit the level of system by looking at the form 
because we do not have the complementary 
gASM model of the system to compare to. So 
even beyond the need to explore the whole 
design space we need to explore it at all the 
schematic levels. Thus we get representation as 
we move down the schematic levels and 
repetition as we move up the schematic levels 



A Critique of SysML from the point of view of General Schemas Theory -- Kent 
Palmer 

20 

but there is actually a leap to the next emergent 
level that cannot be made by repetition. There is 
between the repetition and representation within 
each schema at each dimensional level for that 
schema a mimicry between these two chains of 
connection upward and downward through the 
schematic hierarchy. These chains could be 
used to inform our models. Probably there are 
methods at each schematic level as well as 
diagrammatic conventions associated with 
them. We ought to be able to leverage the 
methods and the diagrams that apply at the 
other schematic levels in our design process if 
we understood them. At the moment they are 
only a hypothesis that needs further research. 
 
Full Circle 
 
So in the end we come back to the importance 
of the Schematic hierarchy and its development 
for Systems Engineering and for that matter 
Systems Theory which should be the foundation 
of Systems Engineering. But ultimately we 
should be able to talk of Schemas Engineering 
based on Schemas Theory. But that day is far 
off in the future. First we must fix all the 
problems we found when we ventured to go 
around the ontic/ontological triangle. If we 
work on those problems then we will create a 
more robust foundation for understanding the 
uniqueness of Systems Engineering minimal 
methods, and methodologies and tools that 
implement those minimal methods. Ad hoc 
additions to UML will not solve the essential 
problem. Systems Engineering has its own 
emergent organization different from software 
or hardware and we need to understand that 
organization. The ontic/ontological triangle 
helps us do that. It gives a context for the 
UML/SysML development. Those tools were 
developed by vendors that were exhausted from 
the methodology wars in Software Engineering. 
But by abstracting out the minimal methods and 
leaving behind the methodology that connects 
them we are left with a pure representation at 
the level of form that does not achieve the 
wholeness of a system. No matter how many 
different diagrams you add you will not achieve 

a global view of the system under design. Thus 
SysML is merely a further complexification of 
UML. That complexity is demanded by the 
non-representability and non-computability of 
the design space into which designers must 
forage for synergies that will allow emergent 
properties to appear in actualized 
implementations of designs. But if we take a 
broader view given to us by the development of 
general schemas theory and augmented by the 
understanding of the connection of schemas to 
mathesis and logic then we begin to understand 
the role of UML/SysML and can put them in 
their proper perspective. 

 

What this paper calls for is a research agenda 
that looks into the unique requirements of 
Emergence Engineering based on General 
Schemas Theory and the necessary co-advances 
in logic, in model theory, in mathesis, and in 
representation/repetition theory, not to mention 
the application of philosophical category 
theory. It hopes to see this research agenda 
inform the development of SysML as a superset 
of UML such that it actually addresses the real 
problems of designers of Systems and Systems 
of Systems as well as Meta-systems, but that 
could also be applied to design on all the 
schematic levels. SysML is an advance for 
systems engineers but only a very small 
advance considering the ever more complex 
systems that we are expected to build by hand 
with no tools or even appropriate 
representations or methods. Software 
Engineering would like to explain to us that 
UML solves all our problems and with a few 
extensions of UML into SysML we will be 
satisfied. But there is a more fundamental 
problem that Systems Engineering is an 
emergent level above Software and Hardware 
Engineering with its own sui generis 
characteristics that cannot be reduced to the 
diagramming techniques of Software and 
Hardware. Rather a new way of representing 
whole systems needs to be developed that 
subsumes hardware and software 
representations. Part of that comes from the 
duality between gASM models and minimal 



A Critique of SysML from the point of view of General Schemas Theory -- Kent 
Palmer 

21 

method representations. Part of it comes from 
the incorporation of semi-formal methods with 
logic and math embedded. Part of it comes from 
the application of the full panoply of the 
schemas discovered by General Schemas 
Theory. But exactly what this new 
representation of the whole system/meta-system 
will be like is unknown and needs to be the 
subject of research. I am attempting to engage 
in that research into the foundations of Systems 
Engineering representations and methods. But it 
is a vast field and I invite others to join me in 
this adventure7. 
 
Author 
 
A practicing Systems Engineer in a major 
Aerospace organization and also a student at 
the Systems Engineering and Evaluation Center 
(SEEC) at the University of South Australia. 
See http://holonomic.net and http://archonic.net  

                     
7 See http://holonomic.net 


