
SE UML RFI RESPONSE -- Kent Palmer 

1 

Proposed "Integral 
Systems 

Engineering 
Methodology" 

Architectural Design 
Language 

BASED ON THE EXISTING 
"INTEGRAL SOFTWARE 

ENGINEERING METHODOLOGY" 
(ISEM) ARCHITECTURAL DESIGN 
LANGUAGE FROM WILD SOFTWARE 

META-SYSTEMS. 

RESPONSE TO REQUEST FOR 
INFORMATION(SE DSIG RFI 1)FROM 

THE SYSTEMS ENGINEERING 
DOMAIN SPECIAL INTEREST 
GROUP(SE DSIG)OF THE OMG 

Kent D. Palmer, Ph.D. 

P.O. Box 1632  
Orange CA 92856 USA 

714-633-9508 
palmer@exo.com, kent@palmer.name 

 
 

Copyright 2002 K.D. Palmer.  
All Rights Reserved. Not for distribution.  

Version 0.02; 8/9/02; uml01a02.doc 
 

 
Keywords: UML, Systems Engineering, 
Architectural Design Languages, ISEM, 
Systems Theory, Meta-systems 

Introduction 

This is a response to the RFI of DSIG on 
Systems Engineering use of UML. In this 

response the specific questions of the RFI 
will not be answered but more general or 
foundation questions that should be 
considered will be brought up for the 
consideration of the DSIG.  

The author of this response is a working 
Systems Engineer and formerly a Software 
Engineer of a major aerospace company. In 
conjunction with doing design work on 
several systems both at the software and 
systems engineering levels the author has 
engaged in an independent program of 
research into the basis of design methods and 
the connection between architectural design 
and systems theory. The results of the first 
stage of this research is to be found in the 
author's electronic book called Wild 
Software Meta-systems1. The author is now 
engaged in a Ph.D. program2 in Systems 
Engineering which in part seeks to rework 
this research into software methods and 
design languages into a design language 
which will be of use at the systems 
architectural design level as well as the 
software architectural design level. 
Preliminary results of this new research can 
be seen in a paper presented at INCOSE 
20023. 

In this paper I would like describe how the 
previous work on the Integral Software 
Engineering Methodology architectural 
design language may be relevant to the 
committees work on a version of UML for 
Systems Engineering. 

UML and Methodology 

UML purports to be a visual language for 
use in designing software systems which 
                     
1 http://archonic.net/wsms.htm 
 
2 See http://www.seec.unisa.edu.au/ 
3 See http://archonic.net See Vajra Logic and 
Mathematical Meta-models for Meta-systems 
Engineering and other papers on Meta-systems 
Engineering. 



SE UML RFI RESPONSE -- Kent Palmer 

2 

brings together a set of various diagrams 
found useful in representing various aspects 
of software systems requirements, 
architecture and design. It sidesteps 
completely the question of methodology and 
avers that its diagrams might be used by a 
variety of methodologies. In my own research 
I have concentrated on the question as to 
where design methods come from and 
secondarily what is the nature of the design 
languages that should be used as 
representations by those methods. This is one 
of the great unsolved problems of Software 
Engineering. There is a rush to produce an 
infinite variety of methods without sufficient 
attention being paid to the foundation of 
those methods. I have attempted to ground 
methods by an appeal to Systems Theory 
especially that proposed by George Klir in 
Architecture of Systems Problem Solving. In 
my paper "Software Engineering Design 
Methodologies and General Systems 
Theory4" which is the first chapter in Wild 
Software Meta-systems I have attempted to 
set down the results of my research into the 
origin of methods and their systematic 
relations. 
 
Briefly, I believe there are at least four 
viewpoints on any realtime system which 
relate to Agent, Function, Data and Event. 
The minimal methods that correspond to 
diagrams in UML are bridges between these 
viewpoints that constitute a field. UML due 
to some of its assumptions is a skewed 
representation of this field which is fairly 
complete. However, UML is a hodge podge 
of minimal method representations that 
should be regularized and attached to the 
underlying field which is organized in 
relation to the fundamental viewpoints rather 
than continuing to be free standing, because 
by not connecting the UML diagrams to the 
field generated by the viewpoints produces 
anomalous distortions in the modeling 

                     
4 International Journal of General Systems - Vol. 24, 

No. 1-2, 1996, pp. 43-94 
 

diagrams in relation to the underlying system 
of minimal methods. I think that as the level 
of abstraction is raised from Software to 
Systems Engineering these distortions will 
become even more telling. 
 
Once a theory had been produced that 
allowed the relations between the various 
minimal methods to be determined then it 
was possible to create a language that 
attempted to capture the showing and hiding 
relations that appertained between the 
various elements that appear in the minimal 
methods (diagrams). Instead of a visual 
diagramming representation a design 
language called Integral Systems Engineering 
Methodology (ISEM) was formulated. It 
attempted to capture every relevant fact 
concerning design architectures. Because it 
was based on Systems Theory it is also 
directly relevant to Systems Engineering level 
architectures of the kind identified by 
Eberhardt Rechtin in Systems Architecting. 
My research has shown that exactly the same 
principles underlay Software and Systems 
level archtecting. It is just a matter of 
abstraction what separates the two kinds of 
architecture. And thus the same minimal 
methods apply to both levels of abstraction 
equally. Thus a UML that covers both 
should be possible. Many of the changes that 
the Systems Engineering community would 
like to make in the current version of UML 
(1.4) are due to the assumptions of the 
priority of Object Oriented Design over 
Functional Design built into the language, 
and because of its specialization to software. 
In other words the language needs to be made 
more general and its assumptions which skew 
it toward object oriented design rather than 
functional design needs to become more even 
handed in order to make the language more 
useful at the Systems Engineering level of 
abstraction. But by connecting UML as a 
visual design representation to the underlying 
methodical field helps to justify these 
changes, because it gives a motivating theory 
for the relation of the representations to each 
other. Otherwise one is merely arguing from 



SE UML RFI RESPONSE -- Kent Palmer 

3 

case by case experience of what seems to 
work or not in particular situations, rather 
than arguing from a methodological theory 
grounded in systems theory. 
 
One point of particular interest is that ISEM 
is not visual but rather a design language 
representation that is text based. This was 
done because it was found that visual 
representations although helpful are in fact 
semantically weak. As system complexity 
increases visual representations break down. 
Thus a design language was created with a 
rational or regularized and simplified 
grammar in order to express the complex and 
multi-way relations between architectural 
design elements that appeared in the minimal 
methods. I believe that UML should be 
extended to have both textual and visual 
complementary representations. This will 
allow visualization in the cases where 
systems representations are simple enough to 
allow them but will allow complex systems 
that do not lend themselves to easy 
visualization to also be represented when 
necessary. A design language is unlike a 
formal language of the formal methods 
parlance or programming languages in that it 
is intrinsically open to the addition of new 
elements and new statements about elements 
to be added as needed by the designer on the 
fly. Such languages are very difficult to 
formally define so that they can be parsed. 
But in practice it is very easy to make up 
such languages as needed augmenting the 
descriptive capability of the minimal method 
language in the process of design itself. Some 
technique for extending the language so that 
it might be parsed after the fact needs to be 
developed. We should be able to design either 
visually or textually and then see the results 
in the other mode. That is a challenge that 
needs to be met by tool designers. I believe 
that textual design representations will 
become even more important at the Systems 
Engineering level abstraction, where 
representations will increase in complexity 
and synergy and confront the need for more 
domain specific modifications. 

 
I am in the process of attempting to redesign 
the ISEM language to function at the 
Systems Engineering level of abstraction in 
such a way that it will be useful for both 
software real-time system architectonic and 
also for systems level architectonic. Part of 
that redesign will be to bring the minimal 
languages into compliance with UML 2.0 
giving an alternative to visual representation 
for those who need more robust modeling 
capability. It is strange that we use 
programming languages or formal method 
languages to describe systems but insist on 
visualization for design. One would think 
that it would be natural for us to use mini-
method based languages to describe systems 
designs. However, one of the assumptions 
built into UML is that visualization of design 
is the only way to go. This means that many 
diagrams might be necessary to describe a 
very complex system when a more simple 
and synergetic representation might be made 
in a few well crafted design language 
statements. At the Systems Engineering level 
of abstraction this sort of synergistic 
simplification of representations will be even 
more important especially if we also describe 
the system of systems level of abstraction as 
well. 
 
Here I would like to point out some features 
of ISEM that do not appear in UML that 
should be considered for addition into UML 
2 and beyond to make it more useful for 
System Engineering. The key to the ISEM 
language is the entity relation diagram for the 
language5. In these diagrams the various key 
nouns in the language, design elements, are 
represented as boxes and the lines between 
these boxes represent statements in the 
language. These diagrams were used to 
attempt to assure completeness in the ISEM 
language. On page 836 the category SET is 
defined and on the next page 837 the 
category LIST is defined along with their 
various statements. ISEM is a series of sub-
                     
5 http://dialog.net:85/wildsoft/wilds11b.pdf 



SE UML RFI RESPONSE -- Kent Palmer 

4 

languages that are directed at various 
minimal methods (diagrams in UML). But 
the language starts with SET and LIST. 
Recently in a paper6 presented to the 
INCOSE 2002 conference the foundations of 
ISEM were augmented by extending to 
MASS and MIXTURES on the basis of the 
realization that we have both count and non-
count approaches to describing things in our 
language. To classical logic pervasion logics 
must be added to describe the interrelation of 
masses and their instances in a way similar 
to the description of sets and the particulars 
that they contain. In the new version of 
ISEM it is intended that the entire language 
will contain this duality between sets and 
masses. Masses are used to define the 
emergent level of executing systems which 
display supervenient properties. Thus we 
design in terms of SET but we experience 
executing systems with their emergent 
properties mostly in terms of MASS. Thus 
going back and forth between SET and 
MASS views will allow us better ways of 
describing the as built systems in relation to 
designs. Fortunately there is a logics related 
to both of these categories, SET and MASS 
so that we can reason about our designs with 
a normal logic but we can also reason about 
the emergent system in terms of a pervasion 
logic such as those developed in China and 
India and which we know as G. Spencer 
Brown's Laws of Form.  
 
Lists are combinations of Mass and Set 
properties, as are Mixtures. Lists let in 
identity under the auspices of difference 
endemic to the Set. Mixtures let in difference 
under the auspices of identity endemic to the 
Mass. This duality between set and mass 
needs to be maintained throughout the 
building of the minimal method languages on 
top of the mathematical categories of Set and 
Mass. Unfortunately in mathematics it is not 
recognized that the Anti-Set is a Mass and it 
is considered to be merely exactly the same 
with its arrows reversed in category theory 
                     
6 op cit Vajra Logic paper 

descriptions. Instead we need to recognize 
that a genuine duality is built into the 
mathematical foundations of our 
architectural representations and exploit that 
in order to be able to represent the difference 
between designs and the emergent properties 
of running systems. This is especially 
important for validating systems. 
 
On page 838 the System sub-language is 
described and there we see the Meta-system 
as the dual of the System. Quite a bit of 
theoretical work has been done by the author 
on the nature of Meta-systems as the dual 
inverse of Systems. See the INCOSE 2000 
paper on Meta-Systems Engineering. This 
duality between systems and meta-systems 
needs to be reflected in the language and in 
the updated version of the language the meta-
systems theory results will be incorporated in 
order to strengthen the description of meta-
systems in the language. 
 
On page 839 the difference between the 
infrastructure and the hierarchy can be seen 
in relation to the various levels of service that 
need to be defined in order to have a good 
way of describing the architecture. These 
include platform, implementation, backplane 
integrator, service and application. This is 
like the levels in the standard 
communications layer model.  
 

On page 840 we see how each level of the 
generic hierarchy is tied into the grid which is 
made up of four orthogonal leveling schemas 
called: tier, layer, partition and strata. The 
grid is a mechanism taken from another 
scholar7 who studied how very complex 
systems are represented and who attempted 
to describe a composite method for 
describing such system. Using the grid it is 
possible to describe any architecture as a set 
of orthogonal levels which respond to 
different viewpoints generated by the 
concerns of the customers and other 
                     
7 unfortunately I have lost this reference 



SE UML RFI RESPONSE -- Kent Palmer 

5 

stakeholders. The grid is multi-dimensional 
orthogonal division of the architecture 
according to different viewpoints. ISEM has 
four such division schemes built in but any 
number can be added. Notice that both the 
System and the Meta-systems have grids. 
The grid is a technique that should be added 
into UML as a means of organizing very 
complex systems. 

On page 841 notice that the Architecture is 
composed of on the one hand the levels of 
service and on the other hand the 
fundamental orthogonal divisions which 
define intersections. Architectural elements 
appear at the intersections of these various 
viewpoints on the architecture. Levels of 
service and along with the system, meta-
system and environmental grids make up a 
domain.  As we see on page 843 the domain 
is the gateway to the description of the 
packaging of the system and meta-system in 
terms of configuration items and products 
that describe the system. The domain also 
organizes the requirements. I support the use 
of Gurevich Abstract State Machines8 for the 
operational description of requirements for 
both systems and meta-systems. On page 845 
we see that Domains are comprised category 
systems. They are related to disciplines. 

On page 846 we can see that an architecture 
is composed of node and arc networks that 
appear together at intersections of the of the 
coordinate systems that are projected by the 
various viewpoints. On page 847 we see that 
these nodes and arcs are category theory 
abstractions for the various specific kinds of 
elements and lines between elements that 
appear on the various minimal method 
diagrams. The language goes on to describe 
each of these mini-design languages given a 
minimal set of statements that will allow 
these various UML like diagrams to be 
described. Some interesting variations with 
respect to well know diagrams might be 

                     
8 See Gurevich Abstract State Machines in Theory 
and Practice at http://archonic.net 

gleaned from these descriptions. The minimal 
methods themselves are described in the 
appendix Description of Software Design 
Minimal Methods9 . 

For the most part this entire language can be 
seen as applying to the System and Meta-
system levels of Architectural Design as well 
as the Software level because it was based on 
advanced Systems Theory from the 
beginning. The same methods seen in UML 
are found in this language for the most part. 
What is different is the fact that it is based 
on systems theory and it describes the genesis 
of minimal methods which are more than just 
ad hoc modeling diagrams but have a 
substantive theory as their basis. But there 
are many nuances to the representations of 
these mini-design languages that should be 
considered for inclusion into any UML for 
Systems Engineering as a refinement, 
especially those aspects that are directed at a 
systems level design and which gives 
increased flexibility and robustness to the 
representations of systems architectures. A 
lot of research needs to be done into the 
foundations of Systems Engineering in 
systems theory and the best expression of 
systems engineering methods for 
architectural design. The production of ad 
hoc diagramming models for visualization is 
a short cut which industry has taken but 
there is very little foundation theoretical 
work to back up the selection of these design 
elements and these relations in the various 
diagrams. More work needs to be done to 
supply those foundations and validate the 
usefulness of particular representations and 
combinations of representations in the 
context of methodologies (which I define as 
sequences of the use of minimal methods). 
The motivation of ISEM was to study 
explicitly those design elements that have 
showing and hiding relations in various 
minimal methods (diagrams) from different 
viewpoints. It was not meant to be a design 
language as such. But it could serve as such 
                     
9 http://dialog.net:85/wildsoft/wilds10b.pdf 



SE UML RFI RESPONSE -- Kent Palmer 

6 

a design language to augment the 
visualization characteristics of UML when 
applied to more complex systems, or systems 
where greater synergy of representations is 
necessary, or systems where compactness of 
representation is for some reason valued, or 
for systems in which we want to reason 
about our designs in ways that is difficult to 
do with diagrams. 

I offer ISEM to the DSIG on Systems 
Engineering and UML as an alternative and 
perhaps contrarian view of what design 
languages should be like in hopes that some 
unique aspects of ISEM might spark more 
debate as to how Systems Architectures 
should ultimately be represented. 

Further Research Work 

Part of my research for my dissertation at 
SEEC will be upgrading the ISEM language 
for application to the Systems Engineering 
level of Abstraction in order to help define 
better ways of representing design 
architectures of Systems and Meta-systems. 
This forms a practical side to this work on a 
thesis called The Foundations of Emergent 
Meta-systems Theory and Practice. In this I 
hope to show that combining Set and Mass 
ways of looking at things along with their 
associated logics is valuable for Systems 
architectural design. It will be see what 
happens when the Set and Mass approaches 
are applied to the minimal methods 
themselves. It will also be interesting to see 
what happens when the language is extended 
to more concretely describe meta-systems as 
well as systems. The language is meant to be 
a test bed for trying out alternative 
representations of architectures. As such it 
complements UML 2.0 which is meant to be 
a working language rather than a basis of 
theoretical explorations of the limits of 
architectural representation. Hopefully if this 
work goes forward as planned it might be a 
basis for contributing to UML 3.0 in which 
all the needs of Systems Engineers are not 

just addressed but firmly founded in Systems 
theory and in which Methodological 
considerations have been fully explored. 

Systems Engineers like Software Engineers 
are not normally Methodologists or Systems 
Theorists and cannot be expected to do the 
foundational work needed to shore up their 
working methods and representational 
concepts. But this is essential work that 
needs to be done by the nascent academic 
branch of Systems Engineering. Spot cures 
sometime turn out to be dangerous and 
deadly in the long run. There is a big 
difference between proposing new 
representations and showing their efficacy. It 
is easy to do the former but very difficult to 
do the latter. But ultimately if we want our 
systems to be safe, secure, and have various 
other x-ilities then we will want that 
substantiation of our representations and 
methodologies for designing and building 
systems. So although I applaud the attempt 
to get a UML that Systems Engineers can 
use as quickly as possible, I would like it to 
be recognized that this is just the beginning 
of a long road of research which validates the 
actual usefulness of UML as a means of 
representing Systems and Meta-systems 
beyond the hype of tool vendors or champion 
practitioners. We need to propose many new 
minimal methods and methodolgical 
combinations of minimal methods and try 
them out in various circumstances in order to 
be sure that the ones we have chosen to be 
incorporated into the language are the best. 
Are we going to jump to a point solution 
without generating the alternatives in our 
design description languages when we 
advocate not doing that in our systems 
engineering design practice? ISEM is an 
outlier text based alternative design 
representation that deserves to be considered, 
and also evolved in order to balance the 
dominance of the visually oriented language 
of UML. This needs to be done if for no 
other reason than to allow us to say we have 
genuinely explored other possible design 
representations in our search for the best way 



SE UML RFI RESPONSE -- Kent Palmer 

7 

to represent systems architectural designs. 

ABO UT TH E AUTH O R  

Kent Palm er10 is a Principal System s Engineer 
at a m ajor Aerospace  System s Com pany. H e  h as 
a Ph .D. in Sociology concentrating on th e  
Ph ilosoph y of Science  from  th e  London Sch ool 
of Econom ics and a B.A. in Sociology from  th e  
University of Kansas. H is dissertation on Th e  
Structure  of Th eoretical System s in Relation to 
Em e rgence 11 focused on h ow  ne w  th ings com e  
into existence  w ith in th e  W e s te rn Ph ilosoph ical 
and Scientific w orldvie w . H e  h as w ritten 
extensively on th e  roots of th e  W e s te rn 
W orldvie w  in h is electronic book  Th e  
Fragm entation of Be ing and th e  Path  Beyond 
th e  Void12. H e  h as h ad nearly tw e nty years 
expe rience 13 in Softw are Engine e ring and 
System s Engineering discipline s  at m ajor 
ae rospace  com panies based in O range  County, 
CA. H e  s e rved several years as th e  ch airm an of 
a Softw are Engine e ring Proces s  Group and is 
now  e ngaged in System s Engineering Proces s  
im provem ent based on CM M I. H e  h as presented 
a tutorial on “Advanced Proces s  
Arch itecture s 14” w h ich  conce rned engine e ring 
w ide proce s s  im provem ents both  in softw are  
and system s  engine e ring. Be s ides proce s s  
expe rience , h e  h as recently been th e  softw are  
team  lead on a Satellite  Payload project and a 
system s  engine e r on a Satellite Ground System  
project. H e  h as also engaged in independent 
re s earch  in System s Th eory w h ich  h as re sulted 
in a book  of w ork ing pape rs called Reflexive  
Autopoietic System s Th eory15. A ne w  
introduction to th is w ork  now  e xists . It is called 
R e fle xive  Autopoie tic Dissipative  Spe cial 
Syste m s  Th e ory16. H e  h as given a tutorial17 on 
"M eta-system s Engineering" to th e  INCO SE 
Principles  w ork ing group. A pape r w ith  th is title 
w as also publish ed in th e  INCO SE 2000 
proceedings. Furth e r pape rs on th is subject w e re  

                     
10 Palmer@exo.com, palmer@dialog.net, 
palmer@interpentrating.net 
11 http://dialog.net:85/homepage/disab.html You man also try 
http://dialog.net or http://think.net  or http://archonic.net for any 
of the web related material.  
12 http://dialog.net:85/homepage/fbpath.htm  
13 http://dialog.net:85/homepage/resume.html  
14 http://dialog.net:85/homepage/advanced.htm  
15 http://dialog.net:85/homepage/refauto2.htm  
16 http://dialog.net:85/homepage/autopoiesis.html  
17 http://dialog.net:85/homepage/incosewg/index.htm  

publish ed in th e  INCO SE 2002 proceedings18. 
H e  h as w ritten a s e rie s  of pape rs on Softw are  
Engine e ring Foundations w h ich  are  contained 
in th e book  W ild Softw are  M eta-system s19 . H e  
h as taugh t a cours e  in “Softw are  R e q uirem ents 
and Design M e th odologie s” at th e University 
California Irvine Extension. H e  is a Ph .D. 
candidate  at th e  System s Engineering 
Evaluation Cente r of th e University of South  
Australia w ith  a proposed dissertation title of 
Th e  Foundations of Em e rgent M e ta-system s 
Th eory and Practice .  

 

 

 

 

 

 

                     
18 http://archonic.net 
19 http://dialog.net:85/homepage/wsms.htm  


